• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Herstellung und Anwendung periodischer Mikrostrukturen auf nichtmetallischen Materialien mittels geformter Laserstrahlung
 
  • Details
  • Full
Options
2018
Doctoral Thesis
Title

Herstellung und Anwendung periodischer Mikrostrukturen auf nichtmetallischen Materialien mittels geformter Laserstrahlung

Abstract
In dieser Arbeit wurden Techniken untersucht, die die zur Verfügung stehende Pulsenergie von Hochleistungslasern effektiv nutzen und in einem Schritt eine Vielzahl einzelner periodisch angeordneter Strukturen herstellen. Dazu wird durch optische Strahlformung ein Laserstrahl mit mehreren Intensitätsmaxima hergestellt. Dazu wurden das Direkte Laserinterferenzstrukturieren (DLIP) und die Microlensarray-Strukturierung (MLAS) genutzt. Beide Verfahren bieten die Möglichkeit, großflächig periodische Strukturen in einem einstufigen Verfahren herzustellen. Beim DLIP werden mit einem Laserpuls, aufgrund von Interferenzeffekten mehrere tausend Linien oder Punkte auf bis zu Quadratzentimeter großen Flächen erzeugt. Microlensarrays (MLA) sind optische Elemente mit einer periodischen Linsenanordnung, die mehrere Brennpunkte aus einem einzigen Laserstrahl erzeugen. Durch die Verwendung als Fokussieroptik können einige tausend Laserpunkte mit einem einzigen Puls erzeugt werden. Anhand verschiedener Materialien werden die Möglichkeiten und Grenzen dieser Techniken untersucht und die Qualität der Strukturen im Hinblick auf die geplante Anwendung untersucht. Die für diese Arbeit genutzten Materialien sind ausschließlich nichtmetallische Werkstoffe. Es werden die Keramiken Hydroxylapatit, Aluminium- und Zirkonoxid, die leitfähigen Dünnschichten aluminium- und bordotiertes Zinkoxid und Indiumzinnoxid auf Glassubstrat und der Kunststoff PET untersucht. Hydroxylapatit ist eine Keramik die aufgrund ihrer guten Biokompatibilität in Knochen- und Zahnimplantaten verwendet wird. Eine Oberflächenstrukturierung ermöglicht eine Verbesserung des Zellwachstums. Aluminium- und Zirkonoxid werden ebenfalls in Gelenkimplantaten verwendet jedoch als Gleitfläche. Eine Strukturierung dieser Flächen verringert möglicherweise Reibung und Verschleiß in ähnlicher Weise wie bei Metallen bereits mehrfach gezeigt. Hier werden aufgrund der benötigten Strukturgrößen mit Perioden von mehreren Mikrometern sowohl DLIP als auch MLAS genutzt. Die leitfähigen Schichten und das PET finden vorrangig in optischer Elektronik Anwendung. Diese findet zunehmende Bedeutung in Form von Solarzellen und Lichtemittierenden Dioden. Die periodische Strukturierung des Substrates oder des beschichteten Substrates bringt ein Beugungsgitter in diese Elemente ein. Bestehende Untersuchungen haben bereits einen positiven Effekt von lithografisch hergestellten Beugungsgittern nachgewiesen. In dieser Arbeit wird untersucht, ob DLIP ebenfalls einen positiven Effekt hat.
Thesis Note
Dresden, TU, Diss., 2017
Author(s)
Berger, Jana
Advisor(s)
Lasagni, Andrés
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Brosius, Alexander
TU Dresden
Publishing Place
Dresden
Link
Link
Language
German
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Keyword(s)
  • Laser

  • Oberflächenfunktionalisierung

  • Mikrostrukturierung

  • Keramik

  • surface functionalisation

  • micropatterning

  • ceramic

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024