Now showing 1 - 1 of 1
  • Publication
    Is Uncertainty Quantification in Deep Learning Sufficient for Out-of-Distribution Detection?
    Reliable information about the uncertainty of predictions from deep neural networks could greatly facilitate their utilization in safety-critical applications. Current approaches for uncertainty quantification usually focus on in-distribution data, where a high uncertainty should be assigned to incorrect predictions. In contrast, we focus on out-of-distribution data where a network cannot make correct predictions and therefore should always report high uncertainty. In this paper, we compare several state-of-the-art uncertainty quantification methods for deep neural networks regarding their ability to detect novel inputs. We evaluate them on image classification tasks with regard to metrics reflecting requirements important for safety-critical applications. Our results show that a portion of out-of-distribution inputs can be detected with reasonable loss in overall accuracy. However, current uncertainty quantification approaches alone are not sufficient for an overall reliable out-of-distribution detection.