Now showing 1 - 9 of 9
  • Publication
    Constructing Spaces and Times for Tactical Analysis in Football
    ( 2021)
    Andrienko, Gennady
    ;
    Andrienko, Natalia
    ;
    Anzer, Gabriel
    ;
    Bauer, P.
    ;
    Budziak, G.
    ;
    ; ;
    Weber, H.
    ;
    A possible objective in analyzing trajectories of multiple simultaneously moving objects, such as football players during a game, is to extract and understand the general patterns of coordinated movement in different classes of situations as they develop. For achieving this objective, we propose an approach that includes a combination of query techniques for flexible selection of episodes of situation development, a method for dynamic aggregation of data from selected groups of episodes, and a data structure for representing the aggregates that enables their exploration and use in further analysis. The aggregation, which is meant to abstract general movement patterns, involves construction of new time-homomorphic reference systems owing to iterative application of aggregation operators to a sequence of data selections. As similar patterns may occur at different spatial locations, we also propose constructing new spatial reference systems for aligning and matching movements irrespective of their absolute locations. The approach was tested in application to tracking data from two Bundesliga games of the 2018/2019 season. It enabled detection of interesting and meaningful general patterns of team behaviors in three classes of situations defined by football experts. The experts found the approach and the underlying concepts worth implementing in tools for football analysts.
  • Publication
    Max-Sum Dispersion via Quantum Annealing
    We devise an Ising model for the max-sum dispersion problem which occurs in contexts such as Web search or text summarization. Given this Ising model, max-sum dispersion can be solved on adiabatic quantum computers; in proof of concept simulations, we solve the corresponding Schrödinger equations and observe our approach to work well.
  • Publication
    Vertrauenswürdiger Einsatz von Künstlicher Intelligenz
    (Fraunhofer IAIS, 2019)
    Cremers, Armin B.
    ;
    Englander, Alex
    ;
    Gabriel, Markus
    ;
    ; ; ; ;
    Rostalski, Frauke
    ;
    Sicking, Joachim
    ;
    ;
    Voosholz, Jan
    ;
    ;
    Die vorliegende Publikation dient als Grundlage für die interdisziplinäre Entwicklung einer Zertifizierung von Künstlicher Intelligenz. Angesichts der rasanten Entwicklung von Künstlicher Intelligenz mit disruptiven und nachhaltigen Folgen für Wirtschaft, Gesellschaft und Alltagsleben verdeutlicht sie, dass sich die hieraus ergebenden Herausforderungen nur im interdisziplinären Dialog von Informatik, Rechtswissenschaften, Philosophie und Ethik bewältigen lassen. Als Ergebnis dieses interdisziplinären Austauschs definiert sie zudem sechs KI-spezifische Handlungsfelder für den vertrauensvollen Einsatz von Künstlicher Intelligenz: Sie umfassen Fairness, Transparenz, Autonomie und Kontrolle, Datenschutz sowie Sicherheit und Verlässlichkeit und adressieren dabei ethische und rechtliche Anforderungen. Letztere werden mit dem Ziel der Operationalisierbarkeit weiter konkretisiert.
  • Publication
    A QUBO Formulation of the k-Medoids Problem
    We are concerned with k-medoids clustering and propose aquadratic unconstrained binary optimization (QUBO) formulation of the problem of identifying k medoids among n data points without having to cluster the data. Given our QUBO formulation of this NP-hard problem, it should be possible to solve it on adiabatic quantum computers.
  • Publication
    Fraunhofer Big Data and Artificial Intelligence Alliance
    Big data is a management issue across sectors and promises to deliver a competitive advantage via structured knowledge, increased efficiency and value creation. Within companies, there is significant demand for big data skills, individual business models, and technological solutions. Fraunhofer assists companies to identify and mine their valuable data. Experts from Fraunhofers Big Data and Artificial Intelligence Alliance demonstrate how companies can benefit from an intelligent enrichment and analysis of their data.
  • Publication
    Fraunhofer-Allianz Big Data
    Big Data ist branchenübergreifend ein Management-Thema und verspricht der Wirtschaft Vorsprung durch strukturiertes Wissen, mehr Effizienz und Wertschöpfung. In den Unternehmen gibt es einen hohen Bedarf an Big-Data- Kompetenzen, individuellen Geschäftsmodellen und technischen Lösungen. Fraunhofer unterstützt Unternehmen dabei, ihre Datenschätze zu identifizieren und zu heben. Experten der Fraunhofer-Allianz Big Data zeigen auf, wie Unternehmen von der intelligenten Anreicherung und Analyse ihrer Daten profitieren können.
  • Publication
    Visit potential: A common vocabulary for the analysis of entity-location interactions in mobility applications
    A growing number of companies and public institutions use mobility data in their day-to-day business. One type of usage is the analysis of spatio-temporal interactions between mobile entities and geographic locations. In practice the employed measures depend on application demands and use context-specific terminology. Thus, a patchwork of measures has evolved which is not suitable for methodological research and interdisciplinary ex-change of ideas. The measures lack a systematic formalization and a uni-form terminology. In this paper we therefore systematically define meas-ures for entity-location interactions which we name visit potential. We provide a common vocabulary that can be applied for an entire class of mobility applications. We present two real-world scenarios which apply entity-location interaction measures and demonstrate how the employed measures can be precisely defined in terms of visit potential.
  • Publication
    Spatial data mining in practice
    Almost any data can be referenced in geographic space. Such data permit advanced analyses that utilize the position and relationships of objects in space as well as geographic background information. Even though spatial data mining is still a young research discipline, in the past years research advances have shown that the particular challenges of spatial data can be mastered and that the technology is ready for practical application when spatial aspects are treated as an integrated part of data mining and model building. In this chapter in particular, we give a detailed description of several customer projects that we have carried out and which all involve customized data mining solutions for business relevant tasks. The applications range from customer segmentation to the prediction of traffic frequencies and the analysis of GPS trajectories. They have been selected to demonstrate key challenges, to provide advanced solutions and to arouse further research questions.