Now showing 1 - 2 of 2
  • Publication
    Integrating lateral swaying of pedestrians into simulations
    Traditionally, pedestrian simulations are a standard tool in public space design, crowd management, and evacuation management. In particular, when minimizing evacuation times or identifiying hazardous locations, it is of vital importance that simulations are as accurate and realistic as possible. Although today's pedestrian simulation models give satisfying results in many cases, they are not realistic in highly crowded scenes. In this paper, we describe a characteristic motion pattern that is commonly observed in areas of high pedestrian density and that has not been taken into account in state-of-the-art pedestrian models. Hence, we extend an existing pedestrian model by integrating this characteristic motion pattern and show that our proposed model gives more realistic trajectories.
  • Publication
    Analyzing pedestrian behavior in crowds for automatic detection of congestions
    Congestions in pedestrian traffic typically occur when the number of pedestrians exceeds the capacity of pedestrian facilities. In some cases, the pedestrian density reaches a critical level which may lead to a crowd stampede as happens rather frequently at mass gatherings, in stadiums or at train stations. In the past, research has focused on improving simulations of crowd motion in order to identify potentially dangerous locations and to direct pedestrian streams. Recently, works towards the automatic real-time detection of critical mass behavior based on optical flow computations have been proposed. In this paper, we verify these approaches by analyzing mircoscopic pedestrian behavior in congestions and conducting experiments on synthetic as well as on real datasets.