Now showing 1 - 5 of 5
  • Publication
    Towards Intelligent Food Waste Prevention: An Approach Using Scalable and Flexible Harvest Schedule Optimization with Evolutionary Algorithms
    In times of climate change, growing world population, and the resulting scarcity of resources, efficient and economical usage of agricultural land is increasingly important and challenging at the same time. To avoid disadvantages of monocropping for soil and environment, it is advisable to practice intercropping of various plant species whenever possible. However, intercropping is challenging as it requires a balanced planting schedule due to individual cultivation time frames. Maintaining a continuous harvest throughout the season is important as it reduces logistical costs and related greenhouse gas emissions, and can also help to reduce food waste. Motivated by the prevention of food waste, this work proposes a flexible optimization method for a full harvest season of large crop ensembles that complies with given economical and environmental constraints. Our approach applies evolutionary algorithms and we further combine our evolution strategy with a sophisticated hierarchical loss function and adaptive mutation rate. We thus transfer the multi-objective into a pseudo-single-objective optimization problem, for which we obtain faster and better solutions than those of conventional approaches.
  • Publication
    Street-Map Based Validation of Semantic Segmentation in Autonomous Driving
    ( 2021) ; ;
    Hueger, Fabian
    ;
    Schneider, Jan David
    ;
    ;
    Artificial intelligence for autonomous driving must meet strict requirements on safety and robustness, which motivates the thorough validation of learned models. However, current validation approaches mostly require ground truth data and are thus both cost-intensive and limited in their applicability. We propose to overcome these limitations by a model agnostic validation using a-priori knowledge from street maps. In particular, we show how to validate semantic segmentation masks and demonstrate the potential of our approach using OpenStreetMap. We introduce validation metrics that indicate false positive or negative road segments. Besides the validation approach, we present a method to correct the vehicle's GPS position so that a more accurate localization can be used for the street-map based validation. Lastly, we present quantitative results on the Cityscapes dataset indicating that our validation approach can indeed uncover errors in semantic segmentation masks.
  • Publication
    Combining Machine Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions
    In this paper, we describe the combination of machine learning and simulation towards a hybrid modelling approach. Such a combination of data-based and knowledge-based modelling is motivated by applications that are partly based on causal relationships, while other effects result from hidden dependencies that are represented in huge amounts of data. Our aim is to bridge the knowledge gap between the two individual communities from machine learning and simulation to promote the development of hybrid systems. We present a conceptual framework that helps to identify potential combined approaches and employ it to give a structured overview of different types of combinations using exemplary approaches of simulation-assisted machine learning and machine-learning assisted simulation. We also discuss an advanced pairing in the context of Industry 4.0 where we see particular further potential for hybrid systems. In this paper, we describe the combination of machine learning and simulation towards a hybrid modelling approach. Such a combination of data-based and knowledge-based modelling is motivated by applications that are partly based on causal relationships, while other effects result from hidden dependencies that are represented in huge amounts of data. Our aim is to bridge the knowledge gap between the two individual communities from machine learning and simulation to promote the development of hybrid systems. We present a conceptual framework that helps to identify potential combined approaches and employ it to give a structured overview of different types of combinations using exemplary approaches of simulation-assisted machine learning and machine-learning assisted simulation. We also discuss an advanced pairing in the context of Industry 4.0 where we see particular further potential for hybrid systems.
  • Publication
    Towards Map-Based Validation of Semantic Segmentation Masks
    ( 2020) ; ;
    Hueger, Fabian
    ;
    Schneider, Jan David
    ;
    Artificial intelligence for autonomous driving must meet strict requirements on safety and robustness. We propose to validate machine learning models for self-driving vehicles not only with given ground truth labels, but also with additional a-priori knowledge. In particular, we suggest to validate the drivable area in semantic segmentation masks using given street map data. We present first results, which indicate that prediction errors can be uncovered by map-based validation.
  • Publication
    Informed Machine Learning - A Taxonomy and Survey of Integrating Knowledge into Learning Systems
    Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process, which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. First, we provide a definition and propose a concept for informed machine learning, which illustrates its building blocks and distinguishes it from conventional machine learning. Second, we introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Third, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.