Now showing 1 - 6 of 6
  • Publication
    Precision glass molding process enhancing the expanding of chip-on-tip endoscopes
    A new endoscope structure called chip-on-tip is designed to reach both miniaturization and affordability beyond the conventional rigid endoscope. Hence, the precision glass molding process as a replicative manufacturing method can be integrated into the endoscopes production chain and deliver the optics with not only high quality but also reasonable cost under large production volume.
  • Publication
    The digital twin in battery cell production
    ( 2023-01-11) ;
    Schmetz, Arno
    ;
    ; ;
    Pouls, Kevin Bernard
    ;
    Hülsmann, Tom-Hendrik
    ;
    Roth, David
    ;
    Gehring, Janine
    ;
    Hamacher, Nils Christian
    ;
    Jaspers, Wilhelm
    ;
    Mohring, Leon
    ;
    ;
    Tübke, Jens
    ;
    ; ; ; ; ;
    Brandstetter, Alexander
    ;
    ;
    Cziasto, Dennis
    ;
    ;
    Kornely, Mia J. K.
    ;
    Kraus, Sander
    ;
    Niemietz, Philipp
    ;
    ;
    Kampker, Achim
    The concept of the digital twin as the representation of a physical object is currently under development and is delivering promising first results. At the same time, the goals and the definition of digital twins differ, sometimes significantly, depending on the area of application and use case. Therefore, the descriptions and concepts of digital twins in a specific application cannot simply be transferred to new fields of application. Meanwhile, battery cell manufacturing is a key of the energy and mobility transition that is still characterized by high costs as well as scrap rates and will benefit enormously from the use of digital twins. To provide a basis for the development of digital twins in battery cell manufacturing, this white paper presents a unified definition for the digital twin in battery cell manufacturing, based on existing work. For this purpose, three forms of the digital twin are described: the building twin, the machine twin, and the product twin. Each of these forms must be examined in detail so that components of the respective forms can be identified, exemplary use cases can be shown, and concrete goals as well as challenges can be defined. Based on the concepts described in this white paper, the digital twin will be used in battery cell production to track, optimize, and control products and processes in the future. In perspective, this can significantly improve energy, raw material, and cost efficiency.
  • Publication
    Der Digitale Zwilling in der Batteriezellfertigung
    ( 2023-01-10) ;
    Schmetz, Arno
    ;
    ; ;
    Pouls, Kevin Bernard
    ;
    Hülsmann, Tom-Hendrik
    ;
    Roth, David
    ;
    Gehring, Janine
    ;
    Hamacher, Nils Christian
    ;
    Jaspers, Wilhelm
    ;
    Mohring, Leon
    ;
    ; ; ; ; ; ; ;
    Brandstetter, Alexander
    ;
    ;
    Cziasto, Dennis
    ;
    ;
    Kornely, Mia J.K.
    ;
    Kraus, Sander
    ;
    Niemietz, Philipp
    ;
    ;
    Kampker, Achim
    Das Konzept des Digitalen Zwillings als Abbild eines physischen Gegenstücks befindet sich zurzeit in der Entwicklung und liefert erste vielversprechende Ergebnisse. Gleichzeitig unterscheiden sich die Ziele und die Definition Digitaler Zwillinge abhängig von Anwendungsbereich und Anwendungsfall teils deutlich voneinander. Die Beschreibungen und Konzepte Digitaler Zwillinge einer konkreten Anwendung lassen sich deshalb nicht einfach auf neue Anwendungsfelder übertragen. Unterdessen ist die Batteriezellfertigung eine Schlüsseltechnologie der Energie- und Mobilitätswende, die noch immer von hohen Kosten sowie Ausschussraten geprägt ist und enorm vom Einsatz Digitaler Zwillinge profitieren wird. Um eine Grundlage für die Entwicklung Digitaler Zwillinge in der Batteriezellfertigung zu schaffen, zeigt dieses Whitepaper, basierend auf bestehenden Arbeiten, eine einheitliche Definition für den Digitalen Zwilling in der Batteriezellfertigung auf. Dafür wurden drei Ausprägungen des Digitalen Zwillings identifiziert: der Gebäudezwilling, der Anlagenzwilling und der Produktzwilling. Jede dieser Ausprägungen gilt es im Detail zu betrachten, sodass Bestandteile der jeweiligen Ausprägungsformen identifiziert, exemplarische Anwendungsfälle aufgezeigt und konkrete Ziele und Herausforderungen definiert werden können. Basierend auf den in diesem Whitepaper beschriebenen Konzepten dient der Digitale Zwilling in der Batteriezellfertigung zukünftig zur Nachverfolgung, Optimierung und Steuerung von Produkten und Prozessen. Dies kann perspektivisch die Energie-, Rohstoff- und Kosteneffizienz in diesem wichtigen Zukunftsbereich deutlich verbessern.
  • Publication
    Resilience in Aviation
    Pandemic, sustainability and efficiency targets pose ongoing challenges for the aviation industry: It must continue to develop propulsion concepts and tap into new materials and manufacturing processes. Cross-domain digital twins harbor previously untapped potential for mastering growing requirements with the help of digitization, as a practical example from the production of aerospace components shows in the white paper. The trend topic of sustainability drives innovation and complements productivity, quality and costs as criteria for strategic corporate decisions. Awareness of this must be consolidated among personnel, as well as the ability to manage resilient processes. Such processes ensure the successful handling of disruptions. In this way, a disruption can even turn into an opportunity. In the white paper, the Fraunhofer IPT pools its expert knowledge on how the dimensions of "technology", "digitalization", "sustainability" and "employees" can be combined in the context of aviation in order to seize this opportunity.
  • Publication
    Resilienz in der Luftfahrt
    Pandemie, Nachhaltigkeits- und Effizienzziele stellt fortlaufende Herausforderungen an die Luftfahrtindustrie: Sie muss Antriebstechnologien weiterentwickeln sowie neue Werkstoffe und Fertigungsverfahren erschließen. Domänenübergreifende digitale Zwillinge bergen bisher ungenutzte Potenziale, um wachsende Anforderungen mithilfe von Digitalisierung zu bewältigen, wie ein praxisnahes Beispiel aus der Fertigung von Luftfahrtkomponenten im Whitepaper aufzeigt. Das Trendthema Nachhaltigkeit treibt Innovationen an und ergänzt Produktivität, Qualität und Kosten als Kriterium für strategische Unternehmensentscheidungen. Das Bewusstsein dafür muss sich beim Personal festigen sowie die Fähigkeit, resiliente Prozesse zu bewältigen. Solche Prozesse stellen den erfolgreichen Umgang mit Störungen sicher. So kann sich eine Störung sogar zu einer Chance wandeln. Das Fraunhofer IPT bündelt im Whitepaper sein Expertenwissen, wie sich die Dimensionen »Technologie«, »Digitalisierung«, »Nachhaltigkeit« und »Personal« im Kontext der Luftfahrt verbinden lassen, um diese Chance zu ergreifen.
  • Publication
    Machinability analysis for milling of additively manufactured Inconel 718 with specifically induced porosity
    ( 2022) ;
    Hermsen, Steffen
    ;
    Kirchmann, Stephan
    ;
    ; ;
    Schleifenbaum, Johannes H.
    Compared to conventional manufacturing technologies, additive manufacturing (AM) offers great design freedom, the integration of functions into components, new lightweight construction concepts and high material efficiency. This technology is increasingly coming into focus in aerospace and turbomachinery engineering, especially the Laser Powder Bed Fusion (LPBF) process. LPBF is already being used for some aerospace components that are often subject to high thermal and mechanical loads. Depending on the component geometry, support structures are required for additive manufacturing, which then have to be removed, usually by machining. Among others, the use of material with specifically induced porosity is suitable as a support structure. This ensures good heat dissipation and thus homogeneous component properties, high retention forces and short process times in the LPBF process. However, the machinability of porous, additively manufactured material has hardly been researched to date. This paper therefore presents the results of machinability investigations with porous, additively manufactured Inconel 718. The investigations included the analysis of active cutting force, cutting tool wear, surface finish and chip geometry in the milling process with tungsten carbide cutting tools. It was found that with the porous material, the dominant type of wear is early starting chipping of the cutting tool edges. The active force decreases with increasing porosity. Partial smearing of the pores was observed on the milled surfaces. The chips of the porous material show a disrupted surface. In future investigations, the aim is to improve the wear behaviour when milling porous Inconel 718.