Now showing 1 - 6 of 6
  • Publication
    Life cycle analysis results for engine blisk LCA
    Purpose - The aviation industry has seen consistent growth over the past few decades. To maintain its sustainability and competitiveness, it is important to have a comprehensive understanding of the environmental impacts across the entire life cycle of the industry, including materials, processes and resources; manufacturing and production; lifetime services; reuse; end-of-life; and recycling. One important component of aircraft engines, integral rotors known as Blisks, are made of high-value metallic alloys that require complex and resource-intensive manufacturing processes. The purpose of this paper is to assess the ecological and economical impacts generated through Blisk production and thereby identify significant ‘hot-spots’. Design/methodology/approach - This paper focuses on the methodology and approach for conducting a full-scale Blisk life cycle assessment (LCA) based on ISO 14040/44. Unlike previous papers in the European Aerospace Science Network series, which focused on the first two stages of LCA, this publication delves into the "life cycle impact assessment" and "interpretation" stages, providing an overview of the life cycle inventory modeling, impact category selection and presenting preliminary LCA results for the Blisk manufacturing process chain. Findings - The result shows that the milled titanium Blisk has a lower CO2 footprint than the milled nickel Blisk, which is less than half of the global warming potential (GWP) of the milled nickel Blisk. A main contributor to GWP arises from raw material production. However, no recycling scenarios were included in the analysis, which will be the topic of further investigations. Originality/value - The originality of this work lies in the detailed ecological assessment of the manufacturing for complex engine components and the derivation of hot spots as well as potential improvements in terms of eco-footprint reduction throughout the products cradle-to-gate cycle. The LCA results serve as a basis for future approaches of process chain optimisation, use of "greener" materials and individual process improvements.
  • Publication
    Life Cycle Inventories for Engine Blisk LCA
    The aviation industry has been growing continuously over the past decades. To ensure sustainability and competitiveness for the aviation industry sector, a full understanding of the environmental impacts is required, not only during use phase but along the entire life cycle, including “Materials”, “Processes and Resources”, “Manufacturing and Production”, “Lifetime Services” as well as “Reuse, End-of-Life and Recycling”. Core engine components, such as integral rotors (Blisks), are comprised of high value metallic alloys that require complex and resource consuming manufacturing processes. This paper will introduce an approach for Life-Cy-cle-Inventory data acquisition during Blisk manufacturing as basis for a Life-Cycle-Assessment (LCA) according to ISO 14040. A particular focus will be set on the data quality and confidence level regarding measuring, acquisition, and analysis of in- and output flows within the Blisk manufacturing process chain in scope. This includes the stages of material generation, forming processes, heat treatments, machining, surface treatments and quality assurance. A greater emphasis is drawn to selected variations on mechanical machining processes. On this basis, first results of an LCA for Blisk-manufacturing will be presented.
  • Publication
    Knowledge-Based Adaptation of Product and Process Design in Blisk Manufacturing
    Early and efficient harmonization between product design and manufacturing represents one of the most challenging tasks in engineering. Concepts such as simultaneous engineering aim for a product creation process, which addresses both, functional requirements as well as requirements from production. However, existing concepts mostly focus on organizational tasks and heavily rely on the human factor for the exchange of complex information across different domains, organizations, or systems. Nowadays product and process design make use of advanced software tools such as computer-aided design, manufacturing, and engineering systems (CAD/CAM/CAE). Modern systems already provide seamless integration of both worlds in a single digital environment to ensure a continuous workflow. Yet, for the holistic harmonization between product and process design, the following aspects are missing: (i) the digital environment does not provide a complete and data consistent digital twin of the component; this applies especially to the process design and analysis environment, (ii) due to the lack of process and part condition data in the manufacturing environment, an adaptation of product and process design for a balanced functionality and manufacturability is hindered, and (iii) systematic long-term data analytics across different product and process designs with the ultimate goal to transfer knowledge from one product to the next and to accelerate the entire product development process is not considered. This paper presents an exploration concept which couples product design (CAD), process design (CAM), process simulation (CAE), and process adaptation in a single software system. The approach provides insights into correlations and dependencies between input parameters of product/process design and the process output. The insights potentially allow for a knowledge-based adaptation, tackling well-known optimization issues such as parameter choice or operation sequencing. First results are demonstrated using the example of a blade integrated disk (blisk). Early and efficient harmonization between product design and manufacturing represents one of the most challenging tasks in engineering. Concepts such as simultaneous engineering aim for a product creation process, which addresses both, functional requirements as well as requirements from production. However, existing concepts mostly focus on organizational tasks and heavily rely on the human factor for the exchange of complex information across different domains, organizations, or systems. Nowadays product and process design make use of advanced software tools such as computer-aided design, manufacturing, and engineering systems (CAD/CAM/CAE). Modern systems already provide seamless integration of both worlds in a single digital environment to ensure a continuous workflow. Yet, for the holistic harmonization between product and process design, the following aspects are missing: (i) the digital environment does not provide a complete and data consistent digital twin of the component; this applies especially to the process design and analysis environment, (ii) due to the lack of process and part condition data in the manufacturing environment, an adaptation of product and process design for a balanced functionality and manufacturability is hindered, and (iii) systematic long-term data analytics across different product and process designs with the ultimate goal to transfer knowledge from one product to the next and to accelerate the entire product development process is not considered. This paper presents an exploration concept which couples product design (CAD), process design (CAM), process simulation (CAE), and process adaptation in a single software system. The approach provides insights into correlations and dependencies between input parameters of product/process design and the process output. The insights potentially allow for a knowledge-based adaptation, tackling well-known optimization issues such as parameter choice or operation sequencing. First results are demonstrated using the example of a blade integrated disk (blisk).
  • Publication
    Knowledge-Based Process Design Optimization in Blisk Manufacturing
    The manufacturing process of blade-integrated disks (blisks) represents one of the most challenging tasks in turbomachinery manufacturing. The requirement is to machine complex, thin-walled blade geometries with high aspect ratios made of difficult-to-cut materials. In addition, extremely tight tolerances are required, since the smallest deviations can lead to a reduction in efficiency of the blisk in the later use. Nowadays, the ramp-up phase for the manufacturing of a new blisk is time and cost-intensive. To find a suitable manufacturing process that meets the required tolerances of the blisk, many experimental tests with different process parameters and strategies are necessary. The used approach is often trial and error, which offers limited testing opportunities, is time-consuming and waste of resources. Therefore, the objective of this paper is to develop a knowledge-based process design optimization in blisk manufacturing. For this purpose, this paper picks up the results from our previous work. Based on these results, an experimental validation of the two process design tasks “number of blocks” and “block transition” is conducted. As part of the validation, the results of machining tests on a demonstrator blisk made of Inconel 718 are presented and discussed.
  • Publication
    Knowledge-Based Process Design Optimisation in Blisk Manufacturing
    The manufacturing process of blade-integrated disks (blisks) represents one of the most challenging tasks in turbomachinery manufacturing. The requirement is to machine complex, thin-walled blade geometries with high aspect ratios made of difficult-to-cut materials. In addition, extremely tight tolerances are required, since the smallest deviations can lead to a reduction in efficiency of the blisk in the later use. Nowadays, the ramp-up phase for the manufacturing of a new blisk is time and cost intensive. To find a suitable manufacturing process that meets the required tolerances of the blisk, many experimental tests with different process parameters and strategies are necessary. The used approach is often trial and error which offers limited testing opportunities, is time consuming and wastes resources. Therefore, the objective of this paper is to develop a knowledge-based process design optimization in blisk manufacturing. For this purpose, this paper picks up the results from our previous work. Based on these results, an experimental validation of the two process design tasks "number of blocks"and "block transition"is conducted. As part of the validation, the results of machining tests on a demonstrator blisk made of Inconel 718 are presented and discussed.
  • Publication
    A Cradle to Gate Approach for Life-Cycle-Assessment of Blisk Manufacturing
    The aviation industry has been growing continuously over the past decades. Despite the current Covid-19 crisis, this trend is likely to resume in the near future. On an international level, initiatives like the Green Recovery Plan promoted by the European Union set the basis towards a more environmentally friendly future approach for the aero-industry. The increasing air traffic and the focus on a more sustainable industry as a whole lead to an extensive need for a more balanced assessment of a products life cycle especially on an ecological level. Blisks (or IBRs) remain a central component of every current and very possible every future aero engine configuration. Their advantages during operation compared to conventional compressor rotors are met with a considerably complex manufacturing and production process. In the high-pressure compressor segment of an engine, the material selection is limited to Titanium alloys such as Ti6Al4V and heat-resistant Nickel-alloys such as Inconel718. The corresponding process chains consist of numerous different process steps starting with the initial raw material extraction and ending with the quality assurance (cradle to gate). Especially the central milling process requires a highly qualified process design to ensure a part of sufficient quality. Life-Cycle-Assessments enable an investigation of a products overall environmental impact and ecological footprint throughout its distinct life-cycle. Formal LCAs are generally divided by international standards into four separate steps of analysis: the goal and scope definition, the acquisition of Life Cycle-Inventory, the Life-Cycle-Impact-Assessment and the interpretation. This content of this paper focuses on a general approach for Life-Cycle-Assessment for Blisk manufacturing. Firstly, the goal and scope is set by presenting three separate process chain scenarios for Blisk manufacturing, which mainly differ in terms of raw material selection and individual process selections for blade manufacturing. Secondly, the LCI data (Life-Cycle Inventory) acquisition is illustrated by defining all significant in- and outputs of each individual process step. Thirdly, the approach of a Life-Cycle-Impact-Assessment is presented by introducing the modelling approach in an LCA-software environment. Fourthly, an outlook and discussion on relevant impact-indicators for a subsequent interpretation of future results are conducted.