Now showing 1 - 10 of 18
No Thumbnail Available
Publication

Time-controlled neighborhood-driven policy-based network selection algorithm for message dissemination in hybrid vehicular networks

2018 , Oleinichenko, Oleg , Sevilmis, Yagmur , Roscher, Karsten , Jiru, Josef

In vehicular ad hoc networks (VANETs), successful delivery of GeoUnicast and GeoBroadcast packets depends on scenario-specific aspects like vehicle density, distribution of vehicles on the road and type of the environment (e.g., urban, rural). These aspects can significantly influence the reliability of the connection between communication parties making traditional ITS-G5 based ad hoc networks unreliable. The absence of communication partners in range, long transmission distances, non-line-of-sight (NLOS) conditions are just a few examples that could hinder ITS-G5 transmissions. In this paper, we propose a Hybrid Policy-based Network Selection Algorithm that uses LTE to strengthen and complement ITS-G5 under critical conditions in which successful transmission over the ad hoc network is highly unlikely. The main objective is to use as less LTE transmissions as possible whilst maintaining high Packet Delivery Ratio (PDR) within defined delay constraints. The results, which are derived from extensive simulation campaigns, show a clear advantage of using the hybrid scheme over solely ITS-G5 or LTE.

No Thumbnail Available
Publication

On the feasibility of multi-hop communication in a realistic city scenario

2017 , Roscher, Karsten

Vehicular ad hoc networks (VANETs) are about to enter the market in the upcoming years. While direct message exchange is limited to a few hundred meters and mostly line-of sight, multi-hop forwarding can significantly extend the communication range. In this paper, the influence of network density and vehicle distribution on multi-hop communication in VANETs is investigated using a model of the city of Luxembourg. Introducing an idealistic reference routing we identify the need for high penetration rates to achieve acceptable reliability independent of the selected routing protocol. A comparison with Greedy forwarding shows its weaknesses to select proper next hop candidates when the number of equipped vehicles increases.

No Thumbnail Available
Publication

Low-Delay Forwarding with Multiple Candidates for VANETs Using Multi-Criteria Decision Making

2016 , Roscher, Karsten , Jiru, Josef , Knorr, Rudi

Vehicular ad hoc networks (VANETs) are envisioned to support driver assistance and automated driving posing strict requirements on communication reliability and delay. To support these applications, we propose Low Delay Forwarding with Multiple Candidates (LDMC), a geographic routing approach combining the advantages of sender-based control and opportunistic forwarding. Candidates are ranked based on position, time since the last status update and neighborhood information using multi-criteria decision making. Priority-dependent timers reduce the contention among forwarders. Our evaluation for freeway and grid scenarios shows substantial improvement over existing protocols for real-time applications requiring 100 ms or less end-to-end delay.

No Thumbnail Available
Publication

Efficient authorization authority certificate distribution in VANETs

2016 , Bittl, Sebastian , Roscher, Karsten

Car-to-X communication systems are about to enter the mass market in upcoming years. Security in these networks depends on digital signatures managed by a multi-level certificate hierarchy. Thereby, certificate distribution is critical in regard to channel utilization and data reception delay via security caused packet loss. These issues are even more significant in case not only pseudonym certificates but also authorization authority certificates have to be exchanged between nodes in the VANET. Prior work has not studied distribution of the elements of a multi-levelcertificate chain in detail. Hence, this work provides an analysis of the currently standardized mechanisms and identifies several drawbacks of the straight forward solution proposed so far. Thereby, we find a severe denial of service attack on that solution. Moreover, the distribution problem is found to be similar to the packet forwarding problem encountered in position-based routing. Thus, we study several strategies for efficient distribution of a certificate chain in regard to channel lad, which are adapted from their counterparts in position-based routing. Thereby, we find that by combining pseudonym certificate buffering with requester based responder selection the requirement for certificate chain distribution in VANETs can be removed completely. Hence, the proposed design avoids the identified denial of service weakness and reduces the worst case size of the security envelope of VANET messages by more than a third.

No Thumbnail Available
Publication

Mutual influence of certificate distribution and pseudonym change strategies in vehicular ad-hoc networks

2017 , Bittl, Sebastian , Roscher, Karsten

Vehicular ad-hoc networks (VANETs) are subject to high interest from both the automotive industry as well as government bodies owing to their prospect of increasing safety of driving. Wireless data exchange within VANETs requires rigid security mechanisms to enable its usage in safety critical driver assistance systems. Requirements include not only authenticity and integrity of messages, but also privacy of drivers. We find that much research has been conducted on certificate dissemination and on privacy enhancing certificate (i.e., pseudonym) change. However, mutual influence of techniques from both domains has not been studied in prior work. Hence, we provide an analysis of such cross influence. We show that certificate change massively increases channel load under currently standardised certificate distribution mechanisms. Thus, we propose to use explicit signalling of certificate changes among nodes to limit the found overhead. The conducted evaluation shows that this approach overcomes the identified problems.

No Thumbnail Available
Publication

Know thy neighbor - a data-driven approach to neighborhood estimation in VANETs

2017 , Roscher, Karsten , Nitsche, Thomas , Knorr, Rudi

Current advances in vehicular ad-hoc networks (VANETs) point out the importance of multi-hop message dissemination. For this type of communication, the selection of neighboring nodes with stable links is vital. In this work, we address the neighbor selection problem with a data-driven approach. To this aim, we apply machine learning techniques to a massive data-set of ETSI ITS message exchange samples, obtained from simulated traffic in the highly detailed Luxembourg SUMO Traffic (LuST) Scenario. As a result, we present classification methods that increase neighbor selection accuracy by up to 43% compared to the state of the art.

No Thumbnail Available
Publication

Reliable message forwarding in VANETs for delay-sensitive applications

2016 , Roscher, Karsten , Maierbacher, Gerhard

Multi-hop forwarding in VANETs remains a challenging task. Existing protocols either focus on high packet delivery ratios or low latencies. In this paper, we propose Low-Delay Forwarding with Multiple Candidates (LDMC), a novel geographic routing approach using a combination of sender-based forwarder selection and receiver-based coordination of multiple contenders. Candidates are rated based on a combination of position and relative speed information. Contention among forwarders is realized with priority-dependent timers. Our evaluation shows substantial improvement of the forwarding delay while maintaining high packet deliver ratios comparable to contention-based algorithms for different scenarios. Hence, the proposed concept is well suited for delay-sensitive applications like cooperative positioning or coordinated driving.

No Thumbnail Available
Publication

Efficient distribution of certificate chains in VANETs

2017 , Bittl, Sebastian , Roscher, Karsten

Wireless car-to-X communication technology is about to enter the mass market within the next years. Thereby, security in created vehicular ad-hoc networks depends on digital signatures managed by a multi-level certificate hierarchy. Certificate distribution is critical in regard to channel usage and delay of data reception via security caused packet loss. These issues are even more significant in case not only pseudonym certificates, but also certificate authority certificates, have to be exchanged between nodes on demand. Prior work has not treated dissemination of higher level elements from a multi-level certificate chain in detail. Thus, this work provides a study on the recently standardized algorithms. Several drawbacks of the straight forward solution taken so far are identified, which include severe denial of service weaknesses. Solutions to the distribution problem are found to be similar to the ones of the packet forwarding problem encountered in position-based routing. Hence, we study several algorithms for efficient distribution of a certificate chain in regard to channel load, which are adapted from their counterparts in position-based routing. Thereby, a combination of pseudonym certificate buffering with requester based responder selection is found to be able to completely remove the requirement for certificate chain distribution in VANETs. The introduced design avoids the found denial of service weakness, while decreasing the worst case size of the security envelope of VANET messages by more than a third at the same time.

No Thumbnail Available
Publication

Protocol modeling accuracy in VANET simulators

2017 , Bittl, Sebastian , Roscher, Karsten

Vehicular ad hoc networks are about to enter the mass market in upcoming years. High effort for real world field tests leads to high dependency of development and evaluation of such networks on simulations. We compare supported features of common simulation frameworks with current standards and study the performance impact of incomplete standard conformance. We find that a lack of support for data encoding schemes and security functionality may massively affect simulation results. Our findings apply to many well-known simulation frameworks. Proposals to overcome identified weaknesses are provided.

No Thumbnail Available
Publication

Feasibility of Verify-on-Demand in VANETs

2016 , Bittl, Sebastian , Roscher, Karsten

Wireless ad hoc networks are an important topic in the automotive domain. Thereby, strict security requirements lead to high effort for verification of digital signatures used to secure message exchange. A popular approach to limit such effort is to apply verify-on-demand schemes. However, we show that verify-on-demand requires much more cross layer dependencies than identified before. Moreover, a massive denial of service weakness of this kind of verification mechanism is found. Thus, we recommend to prefer verify-all schemes over their verify-on-demand counterparts.