Now showing 1 - 2 of 2
  • Publication
    Efficient distribution of certificate chains in VANETs
    ( 2017)
    Bittl, Sebastian
    ;
    Wireless car-to-X communication technology is about to enter the mass market within the next years. Thereby, security in created vehicular ad-hoc networks depends on digital signatures managed by a multi-level certificate hierarchy. Certificate distribution is critical in regard to channel usage and delay of data reception via security caused packet loss. These issues are even more significant in case not only pseudonym certificates, but also certificate authority certificates, have to be exchanged between nodes on demand. Prior work has not treated dissemination of higher level elements from a multi-level certificate chain in detail. Thus, this work provides a study on the recently standardized algorithms. Several drawbacks of the straight forward solution taken so far are identified, which include severe denial of service weaknesses. Solutions to the distribution problem are found to be similar to the ones of the packet forwarding problem encountered in position-based routing. Hence, we study several algorithms for efficient distribution of a certificate chain in regard to channel load, which are adapted from their counterparts in position-based routing. Thereby, a combination of pseudonym certificate buffering with requester based responder selection is found to be able to completely remove the requirement for certificate chain distribution in VANETs. The introduced design avoids the found denial of service weakness, while decreasing the worst case size of the security envelope of VANET messages by more than a third at the same time.
  • Publication
    Simulationsbasierte Evaluierung eines zeit- und ortsbasierten Pseudonym-Wechsel-Verfahrens für ETSI ITS
    ( 2015)
    Bittl, Sebastian
    ;
    Schlegel, Marius
    ;
    Die Einführung drahtloser Car-to-X-Kommunikation eröffnet zahlreiche Möglichkeiten für die Realisierung zukünftiger Fahrerassistenzsysteme. Aufgrund einer Vielzahl an verkehrssicherheitskritischen Anwendungsfällen werden in bisherigen Standards zur Wahrung von Authentizität, Integrität und Verbindlichkeit digitale Zertifikate und digital signierte Nachrichten verwendet. Um die Privatsphäre der Fahrzeugnutzer zu gewährleisten, setzt das bisher standardisierte Konzept auf ein unkoordiniertes Austauschen der Teilnehmeridentitäten bzw. ihrer Zertifikate. Da zahlreiche Schwächen in diesem Konzept identifiziert wurden, führen fortgeschrittene Ansätze zeitlich synchronisierte Identitätswechsel aus. Diese erfordern jedoch im Regelfall zusätzlichen Kommunikationsaufwand und limitieren die Erfolgsrate des Angreifers nur eingeschränkt. In dieser Arbeit wird daher ein zeit- und ortsabhängiges Verfahren vorgestellt, mit dem der erzielbare Lernfortschritt beim Tracking durch einen Angreifer minimiert wird, ohne eine zusätzliche Kommunikation der Teilnehmer untereinander zu erfordern. Die simulationsbasierte Evaluierung bestätigt die gute Verwendbarkeit des Ansatzes.