Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Time-controlled neighborhood-driven policy-based network selection algorithm for message dissemination in hybrid vehicular networks

2018 , Oleinichenko, Oleg , Sevilmis, Yagmur , Roscher, Karsten , Jiru, Josef

In vehicular ad hoc networks (VANETs), successful delivery of GeoUnicast and GeoBroadcast packets depends on scenario-specific aspects like vehicle density, distribution of vehicles on the road and type of the environment (e.g., urban, rural). These aspects can significantly influence the reliability of the connection between communication parties making traditional ITS-G5 based ad hoc networks unreliable. The absence of communication partners in range, long transmission distances, non-line-of-sight (NLOS) conditions are just a few examples that could hinder ITS-G5 transmissions. In this paper, we propose a Hybrid Policy-based Network Selection Algorithm that uses LTE to strengthen and complement ITS-G5 under critical conditions in which successful transmission over the ad hoc network is highly unlikely. The main objective is to use as less LTE transmissions as possible whilst maintaining high Packet Delivery Ratio (PDR) within defined delay constraints. The results, which are derived from extensive simulation campaigns, show a clear advantage of using the hybrid scheme over solely ITS-G5 or LTE.

No Thumbnail Available
Publication

Low-Delay Forwarding with Multiple Candidates for VANETs Using Multi-Criteria Decision Making

2016 , Roscher, Karsten , Jiru, Josef , Knorr, Rudi

Vehicular ad hoc networks (VANETs) are envisioned to support driver assistance and automated driving posing strict requirements on communication reliability and delay. To support these applications, we propose Low Delay Forwarding with Multiple Candidates (LDMC), a geographic routing approach combining the advantages of sender-based control and opportunistic forwarding. Candidates are ranked based on position, time since the last status update and neighborhood information using multi-criteria decision making. Priority-dependent timers reduce the contention among forwarders. Our evaluation for freeway and grid scenarios shows substantial improvement over existing protocols for real-time applications requiring 100 ms or less end-to-end delay.

No Thumbnail Available
Publication

Adaptive decision algorithms for data aggregation in VANETs with defined channel load limits

2015 , Jiru, Josef , Mammu, Aboobeker Sidhik Koyamparambil , Roscher, Karsten

The main challenges when realizing safety related applications based on vehicle-to-x communication are scalability and reliability. With an increasing number of vehicles, the communication channel must not get congested especially if a large amount of information has to be transmitted over multiple hops to a destination. This challenge can be solved by reducing the data load through data aggregation. In this paper, we present a decentralized congestion control using the channel busy ratio (CBR) on the application layer for an adaptive control of aggregation levels in real time. Adaptive decision algorithms decide which data is aggregated in real time. Two different approaches are compared: One approach relies on two CBR thresholds (min/max) only and one that allows a higher number of CBR thresholds. In both cases, the adaptive aggregation control increases and decreases the data aggregation levels based on these thresholds. Our simulation results show that both approaches are able to adjust the aggregation levels to given channel load thresholds within seconds resulting in improved data quality even in heavy congested situations. Adaptive decision algorithms result in less error introduced by aggregation. The impact of the two aggregation level control approaches is discussed regarding channel load and resulting data precision.