Now showing 1 - 2 of 2
  • Publication
    Potential-based Credit Assignment for Cooperative RL-based Testing of Autonomous Vehicles
    ( 2023)
    Ayvaz, Utku
    ;
    ;
    Hao, Shen
    While autonomous vehicles (AVs) may perform remarkably well in generic real-life cases, their irrational action in some unforeseen cases leads to critical safety concerns. This paper introduces the concept of collaborative reinforcement learning (RL) to generate challenging test cases for AV planning and decision-making module. One of the critical challenges for collaborative RL is the credit assignment problem, where a proper assignment of rewards to multiple agents interacting in the traffic scenario, considering all parameters and timing, turns out to be non-trivial. In order to address this challenge, we propose a novel potential-based reward-shaping approach inspired by counterfactual analysis for solving the credit-assignment problem. The evaluation in a simulated environment demonstrates the superiority of our proposed approach against other methods using local and global rewards.
  • Publication
    Are Transformers More Robust? Towards Exact Robustness Verification for Transformers
    ( 2023)
    Liao, Brian Hsuan-Cheng
    ;
    ;
    Esen, Hasan
    ;
    Knoll, Alois
    As an emerging type of Neural Networks (NNs), Transformers are used in many domains ranging from Natural Language Processing to Autonomous Driving. In this paper, we study the robustness problem of Transformers, a key characteristic as low robustness may cause safety concerns. Specifically, we focus on Sparsemax-based Transformers and reduce the finding of their maximum robustness to a Mixed Integer Quadratically Constrained Programming (MIQCP) problem. We also design two pre-processing heuristics that can be embedded in the MIQCP encoding and substantially accelerate its solving. We then conduct experiments using the application of Land Departure Warning to compare the robustness of Sparsemax-based Transformers against that of the more conventional Multi-Layer-Perceptron (MLP) NNs. To our surprise, Transformers are not necessarily more robust, leading to profound considerations in selecting appropriate NN architectures for safety-critical domain applications.