Now showing 1 - 2 of 2
  • Publication
    SafeAdapt - safe adaptive software for fully electric vehicles
    The promising advent of Fully Electric Vehicles (FEVs) also induces a shift towards fully electronic control of existing and new vehicle functions. Hereby, critical functions, such as Brake- and Steer-by-Wire, require sophisticated redundancy solutions to ensure safety. As a result, the overall electric/electronic (E/E) architecture of a vehicle is becoming even more complex and costly. To address the need for safety, reliability and cost efficiency in future FEVs, the development of a novel adaptive architecture to manage complexity through generic, adaptive, and system-wide fault handling is essential. Moreover, to enable this transition, design simplicity, cost efficiency, and energy consumption are especially important elements. Consequently, the SafeAdapt project seeks a holistic approach by comprising the methods, tools, and building blocks needed to design, develop and certify such safety-critical systems for the e-vehicle domain. In detail, a platform core encapsulating the basic adaptation mechanisms for relocating and updating functionalities is developed on basis of AUTOSAR. It serves as foundation for an interoperable and standardised solution for adaptation and fault handling in upcoming automotive networked control systems. In particular, emphasis is laid on functional safety with respect to the ISO26262 standard, wherefore an integrated approach ranging from tool chain support, reference architectures, modelling of system design and networking, up to early validation and verification is derived. To realistically validate these adaptation and redundancy concepts, an e-vehicle prototype with different and partly redundant applications is being developed. Moreover, the presented work outlines the motivation and challenges of future E/E architectures and contributes a technical strategy to overcome those hindrances.
  • Publication
    Memory concepts for enabling adaptivity in distributed embedded systems
    ( 2014) ;
    Zeller, Marc
    ;
    Establishing cost and resource efficient dependability through means of adaptivity in safety-critical distributed embedded systems is a strenuous endeavour, as the varying requirements on resilience, control and efficiency across domains prohibits a single solution to suit all needs. To assist the process of determining a safe and efficient system architecture with satisfactory precision, this work exemplifies the importance of differentiation by only addressing distributed embedded systems that perform multiple functions with alternating levels of criticality. Further, they do not require full fail-operational behaviour, thus allowing to sacrifice less important functions in the pursuit of preserving safety. Herein, a dynamic instantiation and graceful degradation strategy is developed to subsequently study its effect on cost when implemented in conjunction with execute-in-place (NOR-flash) or block-addressable (NAND-flash) memory concepts. Even though NOR-flash is generally considered to be a better candidate for such systems, this qualitative research produces evidence that NAND-flash memory concepts are likely to financially outperform traditional architectures when considering adaptivity.