Now showing 1 - 5 of 5
  • Publication
    Adaptive Software für sicherheitskritische Funktionen in Batterie-elektrischen Fahrzeugen
    ( 2016)
    Rosenthal, Thorsten
    ;
    Feismann, Timo
    ;
    ; ;
    Klein, Cornel
    Der Einzug von immer mehr Assistenz- und (teil-) autonomen Systemen in heutige und insbesondere in zukünftige Fahrzeuge verlangt höhere Sicherheitsanforderungen bis hin zu fehlertoleranten Systemen. Eine adaptive Software-Architektur für sicherheitskritische Funktionen hilft diese Fehlertoleranz in einem Fahrzeug robust, kostengünstig und auch energieeffizient umzusetzen. Diese Software bedient sich dabei der ohnehin vorhandenen Steuergeräte im Fahrzeug und ermöglicht dadurch eine Redundanz ohne die Einbringung von zusätzlichen Steuergeräten. Durch die Konformität zu AUTOSAR ist das Konzept universell auf jeder automotive-tauglichen Hardware realisierbar.
  • Publication
    Adaptive Software-Architekturen für automatisierte Systeme
    Die zunehmende Automatisierung von Systemen erfordert neue Ansätze zur Steigerung deren Verlässlichkeit und Flexibilität. In zukünftig hochautomatisierten Fahrzeugen kann der Fahrer die Kontrolle über das Fahrzeug vollständig abgeben und muss erst nach 10 Sekunden wieder übernehmen können. Hierfür müssen die hochautomatisierten Fahrfunktionen auch im Fehlerfall weiter funktionieren, d.h. fail-operational sein. Der Beitrag stellt ein neues Konzept und Lösung für zukünftige adaptive Fahrzeugsoftware-Architekturen vor. Dies ermöglicht kosteneffizient, die Ausfallsicherheit in eingebetteten, sicherheitskritischen Systemen zu realisieren. Es werden die grundsätzlichen Herausforderungen, neuen Mechanismen und die Integration in die heutige Entwicklung (u.a. mit AUTOSAR) dargestellt. Das Konzept wurde unter anderem in einem E-Fahrzeug implementiert und evaluiert.
  • Publication
    Memory concepts for enabling adaptivity in distributed embedded systems
    ( 2014) ;
    Zeller, Marc
    ;
    Establishing cost and resource efficient dependability through means of adaptivity in safety-critical distributed embedded systems is a strenuous endeavour, as the varying requirements on resilience, control and efficiency across domains prohibits a single solution to suit all needs. To assist the process of determining a safe and efficient system architecture with satisfactory precision, this work exemplifies the importance of differentiation by only addressing distributed embedded systems that perform multiple functions with alternating levels of criticality. Further, they do not require full fail-operational behaviour, thus allowing to sacrifice less important functions in the pursuit of preserving safety. Herein, a dynamic instantiation and graceful degradation strategy is developed to subsequently study its effect on cost when implemented in conjunction with execute-in-place (NOR-flash) or block-addressable (NAND-flash) memory concepts. Even though NOR-flash is generally considered to be a better candidate for such systems, this qualitative research produces evidence that NAND-flash memory concepts are likely to financially outperform traditional architectures when considering adaptivity.
  • Publication
    SafeAdapt - safe adaptive software for fully electric vehicles
    The promising advent of Fully Electric Vehicles (FEVs) also induces a shift towards fully electronic control of existing and new vehicle functions. Hereby, critical functions, such as Brake- and Steer-by-Wire, require sophisticated redundancy solutions to ensure safety. As a result, the overall electric/electronic (E/E) architecture of a vehicle is becoming even more complex and costly. To address the need for safety, reliability and cost efficiency in future FEVs, the development of a novel adaptive architecture to manage complexity through generic, adaptive, and system-wide fault handling is essential. Moreover, to enable this transition, design simplicity, cost efficiency, and energy consumption are especially important elements. Consequently, the SafeAdapt project seeks a holistic approach by comprising the methods, tools, and building blocks needed to design, develop and certify such safety-critical systems for the e-vehicle domain. In detail, a platform core encapsulating the basic adaptation mechanisms for relocating and updating functionalities is developed on basis of AUTOSAR. It serves as foundation for an interoperable and standardised solution for adaptation and fault handling in upcoming automotive networked control systems. In particular, emphasis is laid on functional safety with respect to the ISO26262 standard, wherefore an integrated approach ranging from tool chain support, reference architectures, modelling of system design and networking, up to early validation and verification is derived. To realistically validate these adaptation and redundancy concepts, an e-vehicle prototype with different and partly redundant applications is being developed. Moreover, the presented work outlines the motivation and challenges of future E/E architectures and contributes a technical strategy to overcome those hindrances.
  • Publication
    Context modeling for dynamic configuration of automotive functions
    ( 2013) ;
    Grigoleit, Florian
    ;
    Struss, Peter
    Current vehicles are usually equipped with an abundance of advanced driver assistant systems. Only a limited number of them can really be active permanently. This motivates our goal of providing the car with the means necessary to dynamically adapt the set of active functions to its current requirements. In this paper, we present a generic context modeling approach suitable for dynamic configuration of automotive functions. The demonstration of the feasibility of the proposed solution and evaluation of its effectiveness was based on a simulated prototypical system configuration. The simulations yielded to a significant reduction in average function activity of an exemplary car system. Depending on the provided context parameters, a reduction of up to 24% was achieved.