Now showing 1 - 4 of 4
  • Publication
    Towards integrating undependable self-adaptive systems in safety-critical environments
    Modern cyber-physical systems (CPS) integrate more and more powerful computing power to master novel applications and adapt to changing situations. A striking example is the recent progression in the automotive market towards autonomous driving. Powerful artificial intelligent algorithms must be executed on high performant parallelized platforms. However, this cannot be employed in a safe way, as the platforms stemming from the consumer electronics (CE) world still lack required dependability and safety mechanisms. In this paper, we present a concept to integrate undependable self-adaptive subsystems into safety-critical environments. For this, we introduce self-adaptation envelopes which manage undependable system parts and integrate within a dependable system. We evaluate our approach by a comprehensive case study of autonomous driving. Thereby, we show that the potential failures of the AUTOSAR Adaptive platform as exemplary undependable system can be handled by our concept. In overall, we outline a way of integrating inherently undependable adaptive systems into safety-critical CPS.
  • Publication
    Towards safety-awareness and dynamic safety management
    Future safety-critical systems will be highly automated or even autonomous and they will dynamically cooperate with other systems as part of a comprehensive ecosystem. This together with increasing utilization of artificial intelligence introduces uncertainties on different levels, which detriment the application of established safety engineering methods and standards. These uncertainties might be tackled by making systems safety-aware and enabling them to manage themselves accordingly. This paper introduces a corresponding conceptual dynamic safety management framework incorporating monitoring facilities and runtime safety-models to create safety-awareness. Based on this, planning and execution of safe system optimizations can be carried out by means of self-adaptation. We illustrate our approach by applying it for the dynamic safety assurance of a single car.
  • Publication
    A Rapid Innovation Framework for Connected Mobility Applications
    (Fraunhofer ESK, 2018)
    Pöhn, Daniela
    ;
    ; ; ; ;
    Seydel, Dominique
    ;
    ; ;
    Freese-Wagner, Manuela
    Connected Mobility Applications help to continuously improve traffic safety and efficiency. Today, much time and effort have to be invested to bring an idea into a safe prototype and to finally launch a reliable product.Software development tools have to adapt to these requirements. They have to support a rapid and continuous development process, that allows to test and validate the distributed application as one overall system. When developing cooperative applications, a higher design complexity has to be handled, as components are distributed over heterogeneous systems that interact with a varying timing behavior and less data confidence. Also, test and validation become more complex. Our Innovation Framework is intended to rapidly bring an idea for a connected application into a prototype so the investment risk for innovative applications is reduced. In this whitepaper we describe the approach of a Rapid InnovationTool Kit that is intended to speed up the development process for connected mobility applications. Thereby, a safe and secure prototype is available at an early development phase to gain experience within field tests that help to rapidly improve the intended application. Our software tool kit is able to find deviations from the specified behaviour and also it can instantly locate and identify erroneous functions within distributed systems. Extensive security tests can then be applied on the implemented application to ensure a secure operation. Another use case for the described testbed is to evaluate communication technologies and to find the most suitable transmission technology for a certain application. For example, short range communication with the 802.11p WLAN technology or the upcoming LTE enhancement LTE-V2X are comparable within specific scenarios. This evaluation can help to reduce the investment risk for the deployment of connected applications.
  • Publication
    Safety & security testing of cooperative automotive systems
    ( 2018)
    Seydel, Dominique
    ;
    ;
    Pöhn, Daniela
    ;
    ;
    Cooperative behavior of automated traffic participants is one next step towards the goals of reducing the number of traffic fatalities and optimizing traffic flow. The notification of a traffic participant's intentions and coordination of driving strategies increase the reaction time for safety functions and allow a foresighted maneuver planning. When developing cooperative applications, a higher design complexity has to be handled, as components are distributed over heterogeneous systems that interact with a varying timing behavior and less data confidence. In this paper, we present a solution for the development, simulation and validation of cooperative automotive systems together with an exemplary development flow for safety and security testing.