Now showing 1 - 2 of 2
  • Publication
    Safe adaptation for reliable and energy-efficient E/E architectures
    ( 2017) ; ; ;
    Ruiz, Alejandra
    ;
    Radermacher, Ansgar
    The upcoming changing mobility paradigms request more and more services and features to be included in future cars. Electric mobility and highly automated driving lead to new requirements and demands on vehicle information and communication (ICT) architectures. For example, in the case of highly automated driving, future drivers no longer need to monitor and control the vehicle all the time. This calls for new fault-tolerant approaches of automotive E/E architectures. In addition, the electrification of vehicles requires a flexible underlying E/E architecture which facilitates enhanced energy management. Within the EU-funded SafeAdapt project, a new E/E architecture for future vehicles has been developed in which adaptive systems ensure safe, reliable, and cost-effective mobility. The holistic approach provides the necessary foundation for future invehicle systems and its evaluation shows the great potential of such reliable and energy-efficient E/E architectures.
  • Publication
    Towards flexible and dependable E/E-architectures for future vehicles
    Future vehicles are expected to evolve towards enabling fully electric and autonomous driving. However, technically this evolution requires fundamental changes of traditional automotive engineering principles. Specifically, challenges arise for the Electric/Electronic (E/E) vehicle architectures as underlying basis for almost all car functionalities. Higher demands on vehicle system's flexibility and dependability have to be incorporated. We present a novel approach for such future E/E-architectures which considers these requirements as first principles by exploiting runtime adaptation capabilities. Based on use cases, a generic hardware and software architecture is presented which enables technology-independent realization of the provided concepts. Additionally, the incorporated generic failure management and design support are introduced. The approach has been evaluated in different prototype demonstrators, including an e-vehicle prototype compromising enhanced driving functionality. Thereby, the advantages of the concepts for future vehicle E/E-architectural development could be highlighted.