Now showing 1 - 4 of 4
  • Publication
    A novel three-dimensional Nrf2 reporter epidermis model for skin sensitization assessment
    ( 2024)
    Brandmair, K.
    ;
    Dising, Denise
    ;
    ;
    Schepky, A.
    ;
    Kuehnl, J.
    ;
    Ebmeyer, J.
    ;
    Skin sensitization assessment has progressed from the use of animal models towards the application of New Approach Methodologies (NAMs). Several skin sensitization NAMs are accepted for regulatory use, but a majority relies on submerged in vitro cell cultures that limit their applicability domain, posing challenges for testing hydrophobic chemicals and mixtures. A newly developed three-dimensional (3D) Nrf2 reporter epidermis model for skin sensitization assessment is reported. This NAM may help to overcome these limitations. The NAM combines the in vivo-like biology and exposure conditions of 3D epidermis models with the reliability, convenience, and cost-effectiveness of secreted reporter gene technology. The Keap1-Nrf2-ARE pathway was chosen as the reporter gene read-out, as it is induced by most skin sensitizers and already adopted in OECD Test guideline 442D. Immortalized human primary keratinocytes (Ker-CT) were stably transfected with the pIGB-Nrf2-SEAP vector to construct a Nrf2 reporter cell line. Ker-CT Nrf2 reporter cells showed negligible basal expression of the Secreted Embryonic Alkaline Phosphatase (SEAP) reporter, which was induced 13.5-fold by exposure to the skin sensitizer cinnamic aldehyde (CA). Co-exposure to CA and the Nrf2 inhibitor glucocorticoid clobetasol propionate significantly suppressed the CA-induced SEAP expression, confirming dependance of the SEAP expression on Nrf2 activation. Using air-liquid interface and animal constituent free culture conditions, the Ker-CT Nrf2 reporter cells differentiated to stratified 3D epidermis models with an in vivo-like skin architecture and functional skin barrier. Evaluation of a Ker-CT Nrf2 reporter cell-based 2D assay by testing 10 conventional reference chemicals showed a predictive accuracy for skin sensitization potential of 80% and 70% compared to LLNA and human data in two independent laboratories and a high intra- and interlaboratory reproducibility. Moreover, the 3D epidermis models predicted 3 sensitizing and 2 non-sensitizing reference chemicals correctly in a first proof-of-concept study. Further investigations foresee the testing of additional chemicals, including hydrophobic compounds and mixtures to confirm the potential of the 3D epidermis models to broaden the applicability domain for NAM-based skin sensitization assessment.
  • Publication
    Characterization and Cytotoxic Activity of Microwave-Assisted Extracted Crude Fucoidans from Different Brown Seaweeds
    ( 2023)
    Zayed, Ahmed
    ;
    ; ; ;
    Shanmugam, Anusriha
    ;
    ;
    Ulber, Roland
    Microwave-assisted extraction (MAE) is recognized as a green method for extraction of natural products. The current research aimed to explore the MAE for fucoidans extraction from different brown seaweeds, including Fucus vesiculosus, F. spiralis, and Laminaria saccharina. Following several solvent-extraction pre-treatment steps and MAE optimization, the algal biomasses were extracted in a ratio of 1:25 in 0.1 M HCl containing 2 M CaCl2 for 1.0 min. The results showed that L. saccharina’s extract was different from the others, regarding the highest sugar content reached 0.47 mg glucose equivalent/mg extract being confirmed by monosaccharide composition analysis and the lowest fucoidan content and sulfation degree at 0.09 mg/mg extract and 0.13, respectively. Moreover, these findings were confirmed by tentative structural elucidation based on Fourier-transform infrared spectrometry which also showed a different spectrum. However, the MAE enhanced melanoidins formation in products, which was confirmed by the intense band at 1420 cm-1. Interestingly, the results of monomeric composition showed that fucoidan extract by MAE from F. vesiculosus belonged to sulfated galactofucans which are known for their potential bioactivities. Furthermore, the cytotoxic activity of the four fucoidans in concentrations ranging from 4.9 µg/mL to 2500 µg/mL was investigated and correlated with the chemical characterization showing that F. vesiculosus_MAE fucoidan was the most potent and safest. The current research revealed the chemical heterogeneity of fucoidans regarding taxonomical class and used greener extraction method of fucoidans toward the achievement of the UN sustainability goals.
  • Publication
    Human-Based Immune Responsive In Vitro Infection Models for Validation of Novel TLR4 Antagonists Identified by Computational Discovery
    ( 2022)
    Merk, H.
    ;
    Amran-Gealia, T.
    ;
    ; ;
    Pichota, Isabelle
    ;
    Stern, N.
    ;
    Rupp, S.
    ;
    Goldblum, A.
    ;
    Infectious diseases are still a major problem worldwide. This includes microbial infections, with a constant increase in resistance to the current anti-infectives employed. Toll-like receptors (TLRs) perform a fundamental role in pathogen recognition and activation of the innate immune response. Promising new approaches to combat infections and inflammatory diseases involve modulation of the host immune system via TLR4. TLR4 and its co-receptors MD2 and CD14 are required for immune response to fungal and bacterial infection by recognition of microbial cell wall components, making it a prime target for drug development. To evaluate the efficacy of anti-infective compounds early on, we have developed a series of human-based immune responsive infection models, including immune responsive 3D-skin infection models for modeling fungal infections. By using computational methods: pharmacophore modeling and molecular docking, we identified a set of 46 potential modulators of TLR4, which were screened in several tests systems of increasing complexity, including immune responsive 3D-skin infection models. We could show a strong suppression of cytokine and chemokine response induced by lipopolysacharide (LPS) and Candida albicans for individual compounds. The development of human-based immune responsive assays provides a more accurate and reliable basis for development of new anti-inflammatory or immune-modulating drugs.
  • Publication
    A helicase-primase drug candidate with sufficient target tissue exposure affects latent neural herpes simplex virus infections
    ( 2021)
    Gege, Christian
    ;
    Bravo, Fernando J.
    ;
    ;
    Hagmaier, Timo
    ;
    Schmachtenberg,Rosanne
    ;
    Elis, Julia
    ;
    ; ;
    Hamprecht, Klaus
    ;
    ;
    Bernstein, David I.
    ;
    Kleymann, Gerald
    More than 50% of the world population is chronically infected with herpesviruses. Herpes simplex virus (HSV) infections are the cause of herpes labialis (cold sores), genital herpes, and sight-impairing keratitis. Less frequently, life-threatening disseminated disease (encephalitis and generalized viremia) can also occur, mainly in immunocompromised patients and newborns. After primary infection, HSV persists for life in a latent state in trigeminal or sacral ganglia and, triggered by diverse stimuli, disease recurs in more than 30% of patients up to several times a year. Current therapy with nucleoside analogs targeting the viral polymerase is somewhat effective but limited by poor exposure in the nervous system, and latent infections are not affected by therapy. Here, we report on an inhibitor of HSV helicase-primase with potent in vitro anti-herpes activity, a different mechanism of action, a low frequency of HSV resistance, and a favorable pharmacokinetic and safety profile. Improved target tissue exposure results in superior efficacy in preventing and treating HSV infection and disease in animal models as compared to standard of care. Therapy of primary HSV infections with drug candidate IM-250 {(S)-2-(2',5'-difluoro-[1,1'-biphenyl]-4-yl)-Nmethyl-N-(4-methyl-5-(S-methylsulfon-imidoyl)thiazol-2-yl)acetamide} not only reduces the duration of disease symptoms or time to healing but also prevents recurrent disease in guinea pigs. Treatment of recurrent infections reduces the frequency of recurrences and viral shedding, and, unlike nucleosidic drugs, IM-250 remains effective for a time after cessation of treatment. Hence, IM-250 has advantages over standard-of-care therapies and represents a promising therapeutic for chronic HSV infection, including nucleoside-resistant HSV.