Now showing 1 - 4 of 4
No Thumbnail Available
Publication

Switchable Heat Pipes for Eco-Friendly Battery Cooling in Electric Vehicles: A Life Cycle Assessment

2024-02-17 , Illner, Maike , Thüsing, Kai , Nioac de Salles, Ana Claudia , Trettenhann, Anian , Albrecht, Stefan , Winkler, Markus

Battery thermal management systems (BTMSs) ensure that lithium-ion batteries (LIBs) in electric vehicles (EVs) are operated in an optimal temperature range to achieve high performance and reduce risks. A conventional BTMS operates either as an active system that uses forced air, water or immersion cooling, or as a complete passive system without any temperature control. Passive systems function without any active energy supply and are therefore economically and environmentally advantageous. However, today’s passive BTMSs have limited cooling performance, which additionally cannot be controlled. To overcome this issue, an innovative BTMS approach based on heat pipes with an integrated thermal switch, developed by the Fraunhofer Cluster of Excellence Programmable Materials (CPM), is presented in this paper. The suggested BTMS consists of switchable heat pipes which couple a passive fin-based cold plate with the battery cells. In cold state, the battery is insulated. If the switching temperature is reached, the heat pipes start working and conduct the battery heat to the cold plate where it is dissipated. The environmental benefits of this novel BTMS approach were then analysed with a Life Cycle Assessment (LCA). Here, a comparison is made between the suggested passive and an active BTMS. For the passive system, significantly lower environmental impacts were observed in nearly all impact categories assessed. It was identified as a technically promising and environmentally friendly approach for battery cooling in EVs of the compact class. Furthermore, the results show that passive BTMS in general are superior from an environmental point of view, due their energy self-sufficient nature

No Thumbnail Available
Publication

Ressourceneffizienzpotenziale von Innovationen in rohstoffnahen Produktionsprozessen

2012 , Albrecht, Stefan , Bollhöfer, Esther , Brandstetter, Christian Peter , Fröhling, Magnus , Mattes, Katharina , Ostertag, Katrin , Peuckert, Jan , Seitz, Ralph , Trippe, Frederik , Woidasky, Jörg

Ressourceneffizienz ist ein zentrales Element der Sicherung der industriellen Produktion in Deutschland und Europa und gleichzeitig eine wichtige Strategie zur Steigerung der Nachhaltigkeit. Umfangreiche Forschungsanstrengungen werden derzeit unternommen, um ressourceneffiziente Produktionsverfahren zu entwickeln und in der industriellen Praxis zu etablieren. Der Beitrag nimmt basierend auf einem Förderschwerpunkt des deutschen Bundesministeriums für Bildung und Forschung eine erste qualitative Einordnung der Ressourceneffizienzpotenziale vor, die mit ausgewählten aktuellen technologischen Entwicklungen im Bereich rohstoffintensiver Produktionsprozesse verbunden sind. An einem Branchenbeispiel werden die erwarteten Einsparpotenziale hinsichtlich kumuliertem Materialaufwand, Primärenergiebedarf und Treibhauspotenzial quantifiziert. Ergänzend werden ausgewählte Herausforderungen der Umsetzung dieser ressourceneffizienten Verfahrensinnovationen beleuchtet.

No Thumbnail Available
Publication

Effect of different technological and energy supply related measures on the primary energy demand of CFPR production

2016 , Wehner, Daniel , Hohmann, Andrea , Schwab, Bernhard , Albrecht, Stefan , Ilg, Robert , Sedlbauer, Klaus , Leistner, Philip , Drechsler, Klaus

Carbon reinforced plastics (CFRP) are well-known for their excellent weight specific properties, resulting in energy reduction and emission savings during the use phase. Due to the required amount of raw materials and energy in the production phase, the holistic sustainability of these materials significantly depends on the manufacturing method, the achieved weight reduction and the respective application. One important key performance indicator to describe the sustainability of products over their whole life cycle is the primary energy demand (PED). The PED includes all sources of primary energy that have to be withdrawn from the environment in order to provide the function of a process, a product or a service. The presented study provides both manufacturers and users of CFRP with the means to effectively reduce the PED of CFRP production by investigating the effect of different technologically and energy supply related measures and their interdependencies along the process chain of CFRP production. The results show a great variance of the PED depending on particular, partly interdependent parameters in the process chains and highlight the importance of a detailed investigation of the state of the process chains subject to optimization.

No Thumbnail Available
Publication

MAI ENVIRO. Vorstudie zur Lebenszyklusanalyse mit ökobilanzieller Bewertung relevanter Fertigungsprozessketten für CFK-Strukturen

2015 , Hohmann, Andrea , Schwab, Bernhard , Wehner, Daniel , Albrecht, Stefan , Ilg, Robert , Schüppel, Denny , Reden, Tjark von

Wie kann ich Bauteile aus CFK energieeffizient herstellen? Welchen Einfluss hat meine Prozessführung auf den Energieverbrauch? Welchen Impact haben die Entwicklungsarbeiten im Cluster MAI Carbon auf die Ressourceneffizienz? All diese Fragen beantwortete das Projekt MAI Enviro, initiiert durch das Cluster Management und die Fraunhofer-Institute ICT-FIL und IBP Abt. GaBi, wissenschaftlich fundiert und unter industrienahen Randbedingungen.