Now showing 1 - 2 of 2
  • Publication
    Switchable Heat Pipes for Eco-Friendly Battery Cooling in Electric Vehicles: A Life Cycle Assessment
    Battery thermal management systems (BTMSs) ensure that lithium-ion batteries (LIBs) in electric vehicles (EVs) are operated in an optimal temperature range to achieve high performance and reduce risks. A conventional BTMS operates either as an active system that uses forced air, water or immersion cooling, or as a complete passive system without any temperature control. Passive systems function without any active energy supply and are therefore economically and environmentally advantageous. However, today’s passive BTMSs have limited cooling performance, which additionally cannot be controlled. To overcome this issue, an innovative BTMS approach based on heat pipes with an integrated thermal switch, developed by the Fraunhofer Cluster of Excellence Programmable Materials (CPM), is presented in this paper. The suggested BTMS consists of switchable heat pipes which couple a passive fin-based cold plate with the battery cells. In cold state, the battery is insulated. If the switching temperature is reached, the heat pipes start working and conduct the battery heat to the cold plate where it is dissipated. The environmental benefits of this novel BTMS approach were then analysed with a Life Cycle Assessment (LCA). Here, a comparison is made between the suggested passive and an active BTMS. For the passive system, significantly lower environmental impacts were observed in nearly all impact categories assessed. It was identified as a technically promising and environmentally friendly approach for battery cooling in EVs of the compact class. Furthermore, the results show that passive BTMS in general are superior from an environmental point of view, due their energy self-sufficient nature
  • Publication
    Sustainable Pultruded Sandwich Profiles with Mycelium Core
    ( 2023-07-28)
    Früchtl, Marion
    ;
    Senz, Andreas
    ;
    ;
    Frank, Jonas Benjamin
    ;
    ; ; ;
    Holland, Maximilian
    ;
    ;
    Christ, Henrik-Alexander
    This research focuses on exploring the potential of mycelium as a sustainable alternative to wood or solid foam in pultruded glass fiber-reinforced plastic (GFRP) sandwich profiles. The study evaluates the performance and the environmental sustainability potential of this composite by mechanical tests and life cycle assessment (LCA). Analysis and comparison of pultruded sandwich profiles with mycelium, polyurethane (PUR) foam and chipboard demonstrate that mycelium is competitive in terms of its performance and environmental impact. The LCA indicates that 88% of greenhouse gas emissions are attributed to mycelium production, with the heat pressing (laboratory scale) being the main culprit. When pultruded profiles with mycelium cores of densities 350 and 550 kg/m 3 are produced using an oil-heated lab press, a global warming potential (GWP) of 5.74 and 9.10 kg CO 2-eq. per functional unit was calculated, respectively. When using an electrically heated press, the GWP decreases to 1.50 and 1.78 kg CO 2-eq. Compared to PUR foam, a reduction of 23% in GWP is possible. In order to leverage this potential, the material performance and the reproducibility of the properties must be further increased. Additionally, an adjustment of the manufacturing process with in situ mycelium deactivation during pultrusion could further reduce the energy consumption.