Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Safe adaptation for reliable and energy-efficient E/E architectures

2017 , Weiß, Gereon , Schleiß, Philipp , Drabek, Christian , Ruiz, Alejandra , Radermacher, Ansgar

The upcoming changing mobility paradigms request more and more services and features to be included in future cars. Electric mobility and highly automated driving lead to new requirements and demands on vehicle information and communication (ICT) architectures. For example, in the case of highly automated driving, future drivers no longer need to monitor and control the vehicle all the time. This calls for new fault-tolerant approaches of automotive E/E architectures. In addition, the electrification of vehicles requires a flexible underlying E/E architecture which facilitates enhanced energy management. Within the EU-funded SafeAdapt project, a new E/E architecture for future vehicles has been developed in which adaptive systems ensure safe, reliable, and cost-effective mobility. The holistic approach provides the necessary foundation for future invehicle systems and its evaluation shows the great potential of such reliable and energy-efficient E/E architectures.

No Thumbnail Available
Publication

A safe generic adaptation mechanism for smart cars

2015 , Ruiz, Alejandra , Juez, Garazi , Schleiß, Philipp , Weiß, Gereon

Today's vehicles are evolving towards smart cars, which will be able to drive autonomously and adapt to changing contexts. Incorporating self-adaptation in these cyber-physical systems (CPS) promises great benefits, like cheaper software based redundancy or optimised resource utilisation. As promising as these advantages are, a respective proportion of a vehicle's functionality poses as safety hazards when confronted with faultand failure situations. Consequently, a system's safety has to been sured with respect to the availability of multiple software applications, thus often resulting in redundant hardware resources, such as dedicated backup control units. To benefit from self-adaptation by means of creating efficient and safe systems, this work introduces a safety concept in form of a generic adaptation mechanism (GAM). In detail, this generic adaptation mechanism is introduced and analysed with respect to generally known and newly created safety hazards, in order to determine a minimal set of system properties and architectural limitations required to safely perform adaptation. Moreover, the approach is applied to the ICT architecture of a smart e-car, thereby highlighting the soundness, general applicability, and advantages of this safety concept and forming the foundation for the currently ongoing implementation of the GAM within a real prototype vehicle.