Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Knowledge-Based Process Design Optimization in Blisk Manufacturing

2022 , Landwehr, Markus , Ganser, Philipp , Vinogradov, Georg , Bergs, Thomas

The manufacturing process of blade-integrated disks (blisks) represents one of the most challenging tasks in turbomachinery manufacturing. The requirement is to machine complex, thin-walled blade geometries with high aspect ratios made of difficult-to-cut materials. In addition, extremely tight tolerances are required, since the smallest deviations can lead to a reduction in efficiency of the blisk in the later use. Nowadays, the ramp-up phase for the manufacturing of a new blisk is time and cost-intensive. To find a suitable manufacturing process that meets the required tolerances of the blisk, many experimental tests with different process parameters and strategies are necessary. The used approach is often trial and error, which offers limited testing opportunities, is time-consuming and waste of resources. Therefore, the objective of this paper is to develop a knowledge-based process design optimization in blisk manufacturing. For this purpose, this paper picks up the results from our previous work. Based on these results, an experimental validation of the two process design tasks “number of blocks” and “block transition” is conducted. As part of the validation, the results of machining tests on a demonstrator blisk made of Inconel 718 are presented and discussed.

No Thumbnail Available
Publication

Investigation of cutting mechanisms in the machining of Ceramic Matrix Composites (CMCs)

2021 , Bergs, Thomas , Ganser, Philipp , Fruh, Daniel , Reisberg, Jannik

Ceramic Matrix Composites (CMCs) are increasingly used in numerous engineering fields, e.g. the aerospace, automotive, energy & nuclearindustry due to their higher permissible material temperature and their lower weight compared to metallic materials. Thanks to the quasi-ductilematerial behaviour, it is possible to carry out time- and cost-efficient finishing with a geometrically defined cutting edge.In this study the cutting mechanisms are analysed in fundamental cutting tests on an orthogonal cutting test bench by variance of the undeformedchip thickness. For the evaluation cutting force measurements, high-speed recordings, surface qualities measurements and chip analyses were conducted.