Now showing 1 - 10 of 18
  • Publication
    Towards integrating undependable self-adaptive systems in safety-critical environments
    Modern cyber-physical systems (CPS) integrate more and more powerful computing power to master novel applications and adapt to changing situations. A striking example is the recent progression in the automotive market towards autonomous driving. Powerful artificial intelligent algorithms must be executed on high performant parallelized platforms. However, this cannot be employed in a safe way, as the platforms stemming from the consumer electronics (CE) world still lack required dependability and safety mechanisms. In this paper, we present a concept to integrate undependable self-adaptive subsystems into safety-critical environments. For this, we introduce self-adaptation envelopes which manage undependable system parts and integrate within a dependable system. We evaluate our approach by a comprehensive case study of autonomous driving. Thereby, we show that the potential failures of the AUTOSAR Adaptive platform as exemplary undependable system can be handled by our concept. In overall, we outline a way of integrating inherently undependable adaptive systems into safety-critical CPS.
  • Publication
    B-space. Dynamic management and assurance of open systems of systems
    Connected cars, freely configurable operating rooms, or autonomous harvesting fleets: dynamically emerging open systems of systems will shape a new generation of systems opening up a vast potential for new kinds of applications. In light of the hard-to-predict structure and behavior of such systems, assuring their safety will require some disruptive changes of established safety paradigms. Combining current research results from different disciplines with industrial experience, this paper dares to think out of the box and look beyond the limits of traditional safety assurance. It structures upcoming challenges posed by the emergence of open systems of systems, tries to shift existing paradigms to meet those new challenges, and proposes an abstract conceptual framework building on comprehensive interlinked multi-concern runtime models for dynamically assuring the safety as well as other properties of open systems of systems. As there currently is no comprehensive realization of the framework, we discuss what kind of approaches could fit into which parts of the framework and exemplify this for the case of conditional safety certificates.
  • Publication
    Towards safety-awareness and dynamic safety management
    Future safety-critical systems will be highly automated or even autonomous and they will dynamically cooperate with other systems as part of a comprehensive ecosystem. This together with increasing utilization of artificial intelligence introduces uncertainties on different levels, which detriment the application of established safety engineering methods and standards. These uncertainties might be tackled by making systems safety-aware and enabling them to manage themselves accordingly. This paper introduces a corresponding conceptual dynamic safety management framework incorporating monitoring facilities and runtime safety-models to create safety-awareness. Based on this, planning and execution of safe system optimizations can be carried out by means of self-adaptation. We illustrate our approach by applying it for the dynamic safety assurance of a single car.
  • Publication
    I-SafE: An integrated safety engineering tool
    ( 2015)
    Antonino, Pablo
    ;
    Velasco, David S.
    ;
    ; ;
    Traditionally, safety engineering has been a matter of tables and textual documents and even of pen and paper. Even in the age of computerization, this did has not really changed significantly, as the state of the practice in safety engineering is nowadays dominated by Excel sheets and Word files. Nevertheless, a range of computer-aided safety analysis and modeling techniques have emerged and are being put to good use. The problem here is, however, that there is a lack of profound integration between different safety artifacts on the one hand and the general engineering artifacts on the other hand. In addition, between the different safety analysis techniques and the regular engineering techniques, there is usually a range of different tools in use that are not really compatible with each other. To overcome this problem, we conceptualized and implemented an integrated multi-analyses and multi-viewpoint safety engineering tool that enables tight integration between different models within and across different engineering disciplines. This paper gives an overview of the main features of this tool.
  • Publication
    WAP: Digital dependability identities
    ( 2015) ; ;
    Papadopoulos, Yiannis
    ;
    Armengaud, Eric
    ;
    Zeller, Marc
    ;
    Höfig, Kai
    Cyber-Physical Systems (CPS) provide enormous potential for innovation but a precondition for this is that the issue of dependability has been addressed. This paper presents the concept of a Digital Dependability Identity (DDI) of a component or system as foundation for assuring the dependability of CPS. A DDI is an analyzable and potentially executable model of information about the dependability of a component or system. We argue that DDIs must fulfill a number of properties including being universally useful across supply chains, enabling off-line certification of systems where possible, and providing capabilities for in-field certification of safety of CPS. In this paper, we focus on system safety as one integral part of dependability and as a practical demonstration of the concept, we present an initial implementation of DDIs in the form of Conditional Safety Certificates (also known as ConSerts). We explain ConSerts and their practical operationalization based on an illustrative example.
  • Publication
    Safety assurance of open adaptive systems - a survey
    Open adaptive systems are the basis for a promising new generation of embedded systems with huge economic potential. In many application domains, however, the systems are safety-critical and an appropriate safety assurance approach is still missing. In recent years, models at runtime have emerged as a promising way to systematically engineer adaptive systems. This approach seems to provide the indispensable leverage for applying safety assurance techniques in adaptive systems. Therefore, this survey analyzes the state-of-the-art of models at runtime from a safety engineering point of view in order to assess the potential of this approach and to identify open gaps that have to be closed in future research to yield a safety assurance approach for open adaptive systems.
  • Publication
    Conditional safety certification of open adaptive systems
    In recent years it has become more and more evident that openness and adaptivity are key characteristics of next-generation distributed systems. The reason for this is not least due to the advent of computing trends like ubiquitous computing, ambient intelligence, and cyber-physical systems, where systems are usually open for dynamic integration and able to react adaptively to changing situations. Despite being open and adaptive, it is a common requirement for such systems to be safe. However, traditional safety assurance techniques, both state-of-the-practice and state-of-the-art ones, are not sufficient in this context. We have recently developed some initial solution concepts based on conditional safety certificates and corresponding runtime analyses. In this article we show how to operationalize these concepts. To this end, we present in detail how to specify conditional safety certificates, how to transform them into suitable runtime models, and how these models finally support dynamic safety evaluations.
  • Publication
    A safety roadmap to cyber-physical systems
    In recent years, the term cyber-physical systems has emerged to characterize a new generation of embedded systems. In cyber-physical systems, embedded systems will be open in the sense that they will dynamically interconnect with other systems and will be able to dynamically adapt to changing runtime contexts. Such open adaptive systems provide a huge potential for society and for the economy. On the other hand, however, openness and adaptivity make it hard or even impossible for developers to predict a system's dynamic structure and behavior. This impedes the assurance of important system quality properties, especially safety and reliability. Safety assurance of cyber-physical systems will therefore be both one of the most urgent and one of the most challenging research questions of the next decade. This chapter analyzes the state of the art in order to identify open gaps and suggests a runtime safety assurance framework for cyber-physical systems to structure ongoing and future research activities.
  • Publication
    Conditional safety certification of open adaptive systems
    In recent years it has become more and more evident that openness and adaptivity are key characteristics of next-generation distributed systems. The reason for this is not least due to the advent of computing trends like Ubiquitous Computing, Ambient Intelligence, and Cyber-Physical Systems, where systems are usually open for dynamic integration and able to react adaptively to changing situations. Despite being open and adaptive, it is a common requirement for such systems to be safe. However, traditional safety assurance techniques, both state-of-the-practice and state-of-the-art ones, are not sufficient in this context. We have recently developed some initial solution concepts based on conditional safety certificates and corresponding runtime analyses. In this article we show how to operationalize these concepts. To this end, we present in detail how to specify conditional safety certificates, how to transform them into suitable runtime models, and how these models finally support dynamic safety evaluations.