Now showing 1 - 10 of 33
  • Publication
    The Relevance of Fuel Cells for Mobility Applications. Discussion Paper
    As energy conversion systems, Fuel Cells (FCs) enable zero emission mobility and have advantages compared to battery-based powertrains for electric vehicles with high payload and high range requirements. Currently high system costs due to low volume production and technological uncertainty hold back a widespread market distribution.
  • Publication
    A fully coupled local and global optical-thermal model for continuous adjacent laser-assisted tape winding process of type-IV pressure vessels
    ( 2021)
    Zaami, Amin
    ;
    Schäkel, Martin
    ;
    Baran, Ismet
    ;
    Bor, Ton C.
    ;
    ;
    Akkerman, Remko
    A numerical process simulation framework is introduced in this paper to describe and predict the process temperature evolution during the laser-assisted tape winding (LATW) process of a type-IV pressure vessel made of glass-reinforced high-density polyethylene (G/HDPE). A local optical-thermal model is fully coupled with a global thermal model for the simulation of continuous adjacent hoop winding cases. The predicted tape and substrate temperatures are compared with the experimental data to validate the process model's effectiveness. The inline temperature was measured by an infrared thermographic camera during the continuous winding. The continuous process temperature of the substrate is affected significantly due to the previously wound layers including the pressure vessel, and a gradual increase of the temperature of the roller and the air inside the liner. A considerable temperature increase calculated as 80-120°C takes place for the substrate during winding of two consecutive layers of (G/HDPE) prepreg tape at the liner ends. The influence of pressure vessel size on the tape and substrate temperatures is investigated for different liner radii using the validated process model. The peak substrate temperature is found to increase approximately 45°C by reducing the radius of the pressure vessel from 272 mm to 68 mm while maintaining all other process conditions constant.
  • Publication
    Process Analysis of Manufacturing Thermoplastic Type-IV Composite Pressure Vessels with Helical Winding Pattern
    ( 2021)
    Schäkel, Martin
    ;
    ;
    Composite pressure vessels (CPVs) are widely employed for the high-pressure storage and transportation of hydrogen due to their extraordinary lightweight characteristics. Thermoset CPVs are the market standard due to easy and reliable production. The use of thermoplastic composites for CPV manufacturing via laser-assisted tape winding presents advantages with regard to out-of-autoclave and clean processing, recyclability and design freedom concerning the winding layup. The complex interactions of multiple process parameters like laser power, irradiation incidence angle and tape feed rate along the winding path influence the bonding quality within the composite laminate and require a thorough understanding, especially for helical winding patterns covering cylinder and dome parts of the pres sure vessel. In this work, helical circuits of composite tape were placed on a thermoplastic liner with systematically varied process parameters. The temperature distribution governing the bonding quality between the tape plies was monitored and processed for data analysis. An empirical model characterizing the influences of process parameters on the nip point temperature was created highlighting differences in temperature variation on cylinder and dome parts. Tape feed rate profiles were also taken into account to identify action fields for the development of an optimized process for thermoplastic CPV manufacturing.
  • Publication
    Non-uniform crystallinity and temperature distribution during adjacent laser-assisted tape winding process of carbon/PA12 pipes
    ( 2020)
    Amin Hosseini, Seyed Mohammad
    ;
    Schäkel, Martin
    ;
    Baran, Ismet
    ;
    ;
    Drongelen, Martin van
    ;
    Akkerman, Remko
    The non-uniform temperature and crystallinity distributions present in carbon fiber-reinforced PA12 composite pipes, produced via laser-assisted tape winding (LATW), are investigated in this paper. The width of the laser source is usually larger than the substrate width which causes multiple heating and cooling of some regions of the (neighboring) substrate and hence temperature and crystallinity gradients during the adjacent hoop winding. A kinematic-optical-thermal (KOT) model coupled with a non-isothermal crystallinity model is developed to capture the transient temperature and crystallinity distributions for growing substrate thickness and width. The predicted temperature trends are validated with thermocouple and thermal camera measurements. The substrate temperature varies in the width direction up to 52%. This will lead to extra polymer remelting and possible degradation. The maximum variation of the crystallinity degree across the width is found to be 270% which shows agreement with the trend of the measured crystallinity degree. It is found that a more realistic description of the melting behavior of the matrix is needed to obtain a more accurate prediction of the crystallinity distribution.
  • Publication
    A new global kinematic-optical-thermal process model for laser-assisted tape winding with an application to helical-wound pressure vessel
    ( 2020)
    Amin Hosseini, Seyed Mohammad
    ;
    Schäkel, Martin
    ;
    Baran, Ismet
    ;
    ;
    Drongelen, Martin van
    ;
    Akkerman, Remko
    A new global kinematic-optical-thermal (KOT) model is proposed to provide a proper understanding and description of the temperature evolution during laser-assisted tape winding and placement (LATW/LATP) on any arbitrary shaped tooling geometry. Triangular facets are utilized in the kinematic model to define a generic tooling together with a user-defined fiber path and time-dependent process settings such as the tape feeding rate. The time-dependent heat flux distribution on the surfaces is calculated by the optical model and subsequently coupled to the thermal model. The numerical implementation of the developed KOT model is first verified for process simulations of the LATP on a flat tooling by comparing the temperature predictions with the available literature data. To validate the KOT model, a total of four pressure vessels are manufactured with in-line temperature measurements. The process temperature predictions are found to agree well with the measured temperature during the helical winding. The influence of the changing tooling curvature and process speed on the process temperature is found to be significant as shown by the experimental and numerical findings.
  • Publication
    Additive Prozesskette zur Herstellung von thermoplastischen Faserverbund-Hybridbauteile
    (Apprimus Verlag, 2020)
    Aus dem derzeitigen Stand der Erkenntnisse lässt sich ein Bedarf für eine wirtschaftliche und flexible Fertigung von maßgeschneiderten Faserverbundbauteilen auf Basis von unidirektionalen thermoplastischen Halbzeugen ermitteln. Diese Dissertation leistet dazu einen Beitrag, indem eine additive Prozesskette zur Herstellung von thermoplastischen Faserverbund-Hybridbauteilen erforscht wird. Die besondere Herausforderung bei der Fertigung von FVK-Bauteilen besteht darin, dass zwei verschiedene Materialphasen verarbeitet werden müssen und sich die Prozessschritte untereinander stark beeinflussen. Im Sinne des Wertschöpfungsmanagements bieten thermoplastische Tapes eine besondere Chance, die Halbzeugproduktion von der diskreten Bauteilfertigung zu entkoppeln und trotzdem eine ausreichend hohe Flexibilität zu erreichen. Aufbauend auf physikalischen Modellen der einzelnen ProzessschritteImprägnieren, Ablegen und Temperieren wird eine Optimierung der Prozesskette, z. B. hinsichtlich der Tapeabmaße, durchgeführt. Dies beinhaltet ebenso eine Betrachtung der Prozessrobustheit, die anhand eines statistischen Modells der in-situ Konsolidierung bewertet wird, wie auch die Untersuchung verschiedener Möglichkeiten zur Skalierung der Produktivität und deren Auswirkungen auf die Gesamtanlageneffektivität. Die gewonnenen Erkenntnisse fließen in die Entwicklung einer Anlagentechnik für die Herstellung von belastungs- und verschnittoptimierten Laminaten ein. Das resultierende, hochintegrierte Anlagenkonzept verfügt über ein IR-basiertes Ablegesystem, welches für die Herstellung ebener Laminate durch in-situ Konsolidierung optimiert ist und sich kostengünstig vervielfältigen lässt. Diese proto-typische Anlage wird zur Prozessentwicklung und Laminatfertigung herangezogen. Eine ausführliche Charakterisierung der Laminate zeigt, dass die mechanischen Eigenschaften mit denen aus konventionellen Prozessen vergleichbar sind. Für die Verarbeitung der hergestellten Laminate zu Thermoplast-Hybridbauteilen wird eine neuartige Verfahrenskombination untersucht. Diese besteht aus einem Thermoformprozess, bei dem das Laminat hauptzeitparallel mit einer Thermoplast-Funktionsstruktur gefügt wird. Eine abschließende Bewertung beantwortet die Forschungsfrage, inwiefern eine wirtschaftliche Herstellung von belastungs- und verschnittoptimierten Laminaten aus uni­direktionalen Tapes mittels in-situ Konsolidierung und deren Verarbeitung zu Hybridbauteilen möglich ist.
  • Publication
    Future Energy Storage Systems for Mobility Applications. Discussion Paper
    The increasing demand for energy storage solutions presents a huge opportunity for mechanical and plant engineering as well as the manufacturing industry. More and more OEMs are investing in the development and production of energy storage systems and electric drive trains. In order to facilitate the transition to zero emission energy consumption, further development of the technology and production of energy storage and conversion systems is required. The Fraunhofer Institute for Production Technology IPT, with its more than 35 years of experience in applied research and development of manufacturing technologies and processes, is committed to contribute significantly to this transition. This study provides an insight into the most relevant energy storage technologies with regard to their principle of operation and design, their market potential and their manufacturing technology. On this basis, companies can make profitable decisions about new strategic alignment and investments. The given technological options for energy storage are assessed regarding their suitability for the application to electrification of vehicles. Due to their general suitability for the application to electric vehicles, Lithium-Ion Batteries and Fuel Cells are selected for a detailed profit/loss consideration. This study shows that commercial vehicles like long-range buses and trucks, are means of transportation for which the Fuel Cell is a superior solution because of technical as well as economic aspects. The main hurdles for Fuel Cell market diffusion concerning these applications are currently high production costs and a TRL below 9.Advancement of manufacturing technology and up-scaling are efficient means for cost reduction and thereby for achieving market distribution. An analysis of the production process, consisting of component manufacturing as well as assembly processes, is presented as a basis for technical development towards cost-efficient Fuel Cell applications. The Bipolar Plate and the Membrane Electrode Assembly are the main cost drivers and are thus the most important components to concentrate cost reduction efforts on. Moreover, current challenges and potential levers for cost reduction alongside with further optimization potential are discussed. Here, the expertise of Fraunhofer IPT is placed in its proper relationship to these needs. Finally, an outlook on a following, second Discussion Paper The Relevance of Fuel Cells for Mobility Applications is presented.
  • Publication
    Kostengünstige Produktionstechnologie für nachhaltige Faserverbundhalbzeuge
    Faserverstärkte Kunststoffe (FVK) haben sich in den vergangenen Jahrzehnten als ein wichtiger Hochleistungswerkstoff in einer Vielzahl von Branchen etabliert. Trotz der zumeist hohen Bauteilkosten finden sie vielfältige Anwendung, z.B., wenn Kostenvorteile durch Ressourcen­einsparung während ihres Einsatzes entstehen. Hohe Kosten von FVK-Bauteilen lassen sich nicht selten auf ihre teuren Ausgangsmaterialien zurückführen: dazu zählen bspw. Kohlenstofffasern, die unter hohem Energie­aufwand hergestellt werden. Einen nicht unwesentlichen Anteil an den Gesamtkosten stellt zudem die Fertigungs­technik für die Herstellung und Weiterverarbeitung von FVK-Halbzeugen dar. Dabei zählen z.B. teure Verfahren für die Halbzeugherstellung und hohe Verschnittraten bei der Verarbeitung zu den Kostentreibern. Bei der Bauteilauslegung und Materialauswahl spielen neben der Wirtschaftlichkeit verstärkt aber auch Faktoren wie Ressourceneffizienz und Nachhaltigkeit eine wichtige Rolle. Am Fraunhofer-Institut für Produktionstechnologie werden daher kostengünstige Produktionssysteme entwickelt, die zukünftig Schlüsseltechnologien für die Herstellung und Verarbeitung von nachhaltigen FVK-Halbzeugen darstellen können.
  • Publication
    Gesteigerte Zuverlässigkeit für die Herstellung von FVK-Druckbehältern
    ( 2019)
    Schäkel, Martin
    ;
    ;
    Druckbehälter aus Faserverbundkunststoff gewinnen für den automobilen Leichtbau zunehmend an Bedeutung. Im Projekt AmbliFibre realisierten Fraunhofer IPT und Partner die Fertigung der komplexen Bauteile austhermoplastischem FVK und stellten mit neuen Simulations- und Qualitätswerkzeugeneine zuverlässige Produktion sicher.
  • Publication
    A Digital Shadow for the Infrared-based Tape Laying Process of Tailored Blanks out of Thermoplastic Unidirectional Tape
    Due to its benefits in creating load and waste optimized composites, the manufacturing of tailored composites blanks has gained increased attention in industry. The Fraunhofer IPT has developed an infrared (IR)-based, in-situ tape laying process of thermoplastic, unidirectional composite tape proving to be a material and cost efficient technology for producing tailored composite blanks. An important part in the in-situ process is finding optimal process parameters regarding high productivity and quality. Besides the optimization of process parameters, machine design as well as blank design including geometry and ply book involveprocess induced effects. Different fibre angles, amount of layers or insufficient radiation power can result in various defects of the blank, such as residual stresses or non-sufficient consolidation between layers. This study investigates how Digital Shadows (DS)help to characterize the IR-based tape laying process of different blank designs. DS for the tape laying process are created showing relevant parameters localised to its position within the laminate. A temperature sensor is integrated in order to attain data for process characterization. A straightforward design of experiments is conducted demonstrating temperature profiles as well as temperaturedependencies between the amount of layers and the size of the laminate.