Now showing 1 - 10 of 63
  • Publication
    Extracting GHZ states from linear cluster states
    ( 2024)
    Jong, Dirk J. de
    ;
    Hahn, F.
    ;
    Tcholtchev, Nikolay Vassilev
    ;
    ;
    Pappa, Anna
    Quantum information processing architectures typically only allow for nearest-neighbor entanglement creation. In many cases, this prevents the direct generation of GHZ states, which are commonly used for many communication and computation tasks. Here, we show how to obtain GHZ states between nodes in a network that are connected in a straight line, naturally allowing them to initially share linear cluster states. We prove a strict upper bound of ⌊(n+3)/2⌋ on the size of the set of nodes sharing a GHZ state that can be obtained from a linear cluster state of n qubits, using local Clifford unitaries, local Pauli measurements, and classical communication. Furthermore, we completely characterize all selections of nodes below this threshold that can share a GHZ state obtained within this setting. Finally, we demonstrate these transformations on the IBMQ Montreal quantum device for linear cluster states of up to n=19 qubits.
  • Publication
    Extracting GHZ states from linear cluster states
    ( 2023-11)
    Jong, J. de
    ;
    Hahn, F.
    ;
    Tcholtchev, Nikolay Vassilev
    ;
    ;
    Pappa, Anna
    Quantum information processing architectures typically only allow for nearest-neighbour entanglement creation. In many cases, this prevents the direct generation of states, which are commonly used for many communication and computation tasks. Here, we show how to obtain states between nodes in a network that are connected in a straight line, naturally allowing them to initially share linear cluster states. We prove a strict upper bound of ⌊(n+3)/2⌋ on the size of the set of nodes sharing a state that can be obtained from a linear cluster state of n qubits, using local Clifford unitaries, local Pauli measurements, and classical communication. Furthermore, we completely characterize all selections of nodes below this threshold that can share a state obtained within this setting. Finally, we demonstrate these transformations on the quantum device for linear cluster states of up to n=19 qubits.
  • Publication
    VisionKG: Unleashing the Power of Visual Datasets via Knowledge Graph
    ( 2023-09)
    Yuan, Jicheng
    ;
    Le-Tuan, Anh
    ;
    Nguyen-Duc, Manh
    ;
    Tran, Trung-Kien
    ;
    ;
    Phuoc, Danh Le
    The availability of vast amounts of visual data with heterogeneous features is a key factor for developing, testing, and benchmarking of new computer vision (CV) algorithms and architectures. Most visual datasets are created and curated for specific tasks or with limited image data distribution for very specific situations, and there is no unified approach to manage and access them across diverse sources, tasks, and taxonomies. This not only creates unnecessary overheads when building robust visual recognition systems, but also introduces biases into learning systems and limits the capabilities of data-centric AI. To address these problems, we propose the Vision Knowledge Graph (VisionKG), a novel resource that interlinks, organizes and manages visual datasets via knowledge graphs and Semantic Web technologies. It can serve as a unified framework facilitating simple access and querying of state-of-the-art visual datasets, regardless of their heterogeneous formats and taxonomies. One of the key differences between our approach and existing methods is that ours is knowledge-based rather than metadatabased. It enhances the enrichment of the semantics at both image and instance levels and offers various data retrieval and exploratory services via SPARQL. VisionKG currently contains 519 million RDF triples that describe approximately 40 million entities, and are accessible at https://vision.semkg.org and through APIs. With the integration of 30 datasets and four popular CV tasks, we demonstrate its usefulness across various scenarios when working with CV pipelines.
  • Publication
    Towards a decentralized data hub and query system for federated dynamic data spaces
    ( 2023)
    Phuoc, Danh Le
    ;
    ;
    Le-Tuan, Anh
    ;
    Kuehn, Uwe A.
    ;
    This position paper proposes a hybrid architecture for secure and efficient data sharing and processing across dynamic data spaces. On the one hand, current centralized approaches are plagued by issues such as lack of privacy and control for users, high costs, and bad performance, making these approaches unsuitable for the decentralized data spaces prevalent in Europe and various industries (decentralized on the conceptual and physical levels while centralized in the underlying implementation). On the other hand, decentralized systems face challenges with limited knowledge of/control over the global system, fair resource utilization, and data provenance. Our proposed Semantic Data Ledger (SDL) approach combines the advantages of both architectures to overcome their limitations. SDL allows users to choose the best combination of centralized and decentralized features, providing a decentralized infrastructure for the publication of structured data with machine-readable semantics. It supports expressive structured queries, secure data sharing, and payment mechanisms based on an underlying autonomous ledger, enabling the implementation of economic models and fair-use strategies.
  • Publication
    Enabling short-term energy flexibility markets through Blockchain
    ( 2022) ; ;
    Tcholtchev, Nikolay Vassilev
    ;
    Climate change has put significant pressure on energy markets. Political decisions such as the plan of the German government to shut down coal power plants by 2038 are shifting electricity production towards renewable and distributed energy resources. The share of these resources will continue to grow significantly in the coming years. This trend changes the ways how energy markets work which mandates fundamental changes in the underlying IT infrastructure. In this paper, we propose a blockchain-based solution which enables an economically viable and grid-serving integration of distributed energy resources into the existing energy system. Our blockchain-based approach targets intraday and day-ahead operating reserve markets, on which energy grid operators and operators of distributed energy resources can trade flexibilities within the schedulable energy production and consumption of their resources. By utilizing these flexibilities as an operating reserve, renewable and climate-friendly technologies can contribute to maintaining the grid stability and security of supply while simultaneously creating economically interesting business models for their operators. We propose to define blockchain-based short-term energy markets by utilizing the concept of general-purpose smart contracts and cryptocurrencies. This enables direct and decentralized trading of energy flexibilities without any intermediary or central instance. We demonstrate the feasibility of our approach through an implementation of a prototype of the proposed markets based on the Ethereum blockchain and provide a detailed evaluation of its efficiency and scalability.
  • Publication
    Navigating through changes of a digital world
    ( 2022)
    Hauk, Nathalie
    ;
    In this chapter, we address the question of how trust in technological development can be increased. The use of information technologies can potentially enable humanity, social justice, and the democratic process. At the same time, there are concerns that the deployment of certain technologies, e.g., AI technologies, can have unintended consequences or can even be used for malicious purposes. In this chapter, we discuss these conflicting positions.
  • Publication
    Design and specification of a privacy-preserving registration for Blockchain-based energy markets
    ( 2022) ; ;
    Tcholtchev, Nikolay Vassilev
    ;
    The challenges of climate change and the related demand to integrate non-plannable and weather-dependent renewable energy resources pose enormous challenges for the entire energy domain, e.g. in the context of grid control. These challenges reveal the need for new technical solutions and new business models while they indicate the required and inevitable transition to smart grids. Many blockchain-based solutions are being discussed in this context, ranging from peer-to-peer energy trading to grid-serving applications. However, especially in connection with public blockchains, clear security privacy challenges arise since the security and privacy of private data must be guaranteed while traceability must be avoided. Therefore, in this paper, we will specify privacy-protecting registration processes for blockchain-based flexibility markets that enable pseudonymous access to the latter. Furthermore, in collaboration with a governmental regulating institution named DGA, we will show that using an existing X.509-based PKI and RSA-based cryptographic processes, the integrity of all market participants can be guaranteed. This integrity is essential for the security-critical use of operating reserve. In addition, we will evaluate the specified processes in terms of efficiency, scalability, security, and privacy protection.
  • Publication
    Computer Scientist's and Programmer's View on Quantum Algorithms: Mapping Functions' APIs and Inputs to Oracles
    ( 2022) ;
    Tcholtchev, Nikolay Vassilev
    ;
    ;
    Quantum Computing (QC) is a promising approach which is expected to boost the development of new services and applications. Specific addressable problems can be tackled through acceleration in computational time and advances with respect to the complexity of the problems, for which QC algorithms can support the solution search. However, QC currently remains a domain that is strongly dominated by a physics' perspective. Indeed, in order to bring QC to industrial grade applications we need to consider multiple perspectives, especially the one of software engineering and software application/service programming. Following this line of thought, the current paper presents our computer scientist's view on the aspect of black-box oracles, which are a key construct for the majority of currently available QC algorithms. Thereby, we observe the need for the input of API functions from the traditional world of software engineering and (web-)services to be mapped to the above mentioned black-box oracles. Hence, there is a clear requirement for automatically generating oracles for specific types of problems/algorithms based on the concrete input to the belonging APIs. In this paper, we discuss the above aspects and illustrate them on two QC algorithms, namely Deutsch-Jozsa and the Grover's algorithm.
  • Publication
    Towards building live open scientific knowledge graphs
    ( 2022)
    Le-Tuan, Anh
    ;
    Franzreb, Carlos
    ;
    Phuoc, Danh Le
    ;
    ;
    Due to the large number and heterogeneity of data sources, it becomes increasingly difficult to follow the research output and the scientific discourse. For example, a publication listed on DBLP may be discussed on Twitter and its underlying data set may be used in a different paper published on arXiv. The scientific discourse this publication is involved in is divided among not integrated systems, and for researchers it might be very hard to follow all discourses a publication or data set may be involved in. Also, many of these data sources-DBLP, arXiv, or Twitter, to name a few-are often updated in real-time. These systems are not integrated (silos), and there is no system for users to query the content/data actively or, what would be even more beneficial, in a publish/subscribe fashion, i.e., a system would actively notify researchers of work interesting to them when such work or discussions become available. In this position paper, we introduce our concept of a live open knowledge graph which can integrate an extensible set of existing or new data sources in a streaming fashion, continuously fetching data from these heterogeneous sources, and interlinking and enriching it on-the-fly. Users can subscribe to continuously query the content/data of their interest and get notified when new content/data becomes available. We also highlight open challenges in realizing a system enabling this concept at scale.
  • Publication
    Efficient Floating Point Arithmetic for Quantum Computers
    ( 2022)
    Seidel, Raphael
    ;
    Tcholtchev, Nikolay Vassilev
    ;
    ; ;
    One of the major promises of quantum computing is the realization of SIMD (single instruction - multiple data) operations using the phenomenon of superposition. Since the dimension of the state space grows exponentially with the number of qubits, we can easily reach situations where we pay less than a single quantum gate per data point for data-processing instructions which would be rather expensive in classical computing. Formulating such instructions in terms of quantum gates, however, still remains a challenging task. Laying out the foundational functions for more advanced data-processing is therefore a subject of paramount importance for advancing the realm of quantum computing. In this paper, we introduce the formalism of encoding so called-semi-boolean polynomials. As it turns out, arithmetic Z/2nZ ring operations can be formulated as semi-boolean polynomial evaluations, which allows convenient generation of unsigned integer arithmetic quantum circuits. For arithmetic evaluations, the resulting algorithm has been known as Fourier-arithmetic. We extend this type of algorithm with additional features, such as ancilla-free in-place multiplication and integer coefficient polynomial evaluation. Furthermore, we introduce a tailormade method for encoding signed integers succeeded by an encoding for arbitrary floating-point numbers. This representation of floating-point numbers and their processing can be applied to any quantum algorithm that performs unsigned modular integer arithmetic. We discuss some further performance enhancements of the semi boolean polynomial encoder and finally supply a complexity estimation. The application of our methods to a 32-bit unsigned integer multiplication demonstrated a 90% circuit depth reduction compared to carry-ripple approaches.