Now showing 1 - 2 of 2
  • Publication
    Runtime safety assurance for adaptive cyber-physical systems: ConSerts M and ontology-based runtime reconfiguration applied to an automotive case study
    ( 2018)
    Amorim, Tiago Luiz Buarque de
    ;
    Ratasich, Denise
    ;
    Macher, Georg
    ;
    Ruiz, Alejandra
    ;
    ;
    Driussi, Mario
    ;
    Grosu, Radu
    Cyber-Physical Systems (CPS) provide their functionality by the interaction of various subsystems. CPS usually operate in uncertain environments and are often safety-critical. The constituent systems are developed by different stakeholders, who - in most cases - cannot fully know the composing parts at development time. Furthermore, a CPS may reconfigure itself during runtime, for instance in order to adapt to current needs or to handle failures. The information needed for safety assurance is only available at composition or reconfiguration time. To tackle this assurance issue, the authors propose a set of contracts to describe components' safety attributes. The contracts are used to verify the safety robustness of the parts and build a safety case at runtime. The approach is applied to a use case in the automotive domain to illustrate the concepts. In particular, the authors demonstrate safety assurance at upgrade and reconfiguration on the example of ontology-based runtime reconfiguration (ORR). ORR substitutes a failed service by exploiting the implicit redundancy of a system.
  • Publication
    A safety roadmap to cyber-physical systems
    In recent years, the term cyber-physical systems has emerged to characterize a new generation of embedded systems. In cyber-physical systems, embedded systems will be open in the sense that they will dynamically interconnect with other systems and will be able to dynamically adapt to changing runtime contexts. Such open adaptive systems provide a huge potential for society and for the economy. On the other hand, however, openness and adaptivity make it hard or even impossible for developers to predict a system's dynamic structure and behavior. This impedes the assurance of important system quality properties, especially safety and reliability. Safety assurance of cyber-physical systems will therefore be both one of the most urgent and one of the most challenging research questions of the next decade. This chapter analyzes the state of the art in order to identify open gaps and suggests a runtime safety assurance framework for cyber-physical systems to structure ongoing and future research activities.