Now showing 1 - 10 of 14
  • Publication
    Towards safety-awareness and dynamic safety management
    Future safety-critical systems will be highly automated or even autonomous and they will dynamically cooperate with other systems as part of a comprehensive ecosystem. This together with increasing utilization of artificial intelligence introduces uncertainties on different levels, which detriment the application of established safety engineering methods and standards. These uncertainties might be tackled by making systems safety-aware and enabling them to manage themselves accordingly. This paper introduces a corresponding conceptual dynamic safety management framework incorporating monitoring facilities and runtime safety-models to create safety-awareness. Based on this, planning and execution of safe system optimizations can be carried out by means of self-adaptation. We illustrate our approach by applying it for the dynamic safety assurance of a single car.
  • Publication
    Towards integrating undependable self-adaptive systems in safety-critical environments
    Modern cyber-physical systems (CPS) integrate more and more powerful computing power to master novel applications and adapt to changing situations. A striking example is the recent progression in the automotive market towards autonomous driving. Powerful artificial intelligent algorithms must be executed on high performant parallelized platforms. However, this cannot be employed in a safe way, as the platforms stemming from the consumer electronics (CE) world still lack required dependability and safety mechanisms. In this paper, we present a concept to integrate undependable self-adaptive subsystems into safety-critical environments. For this, we introduce self-adaptation envelopes which manage undependable system parts and integrate within a dependable system. We evaluate our approach by a comprehensive case study of autonomous driving. Thereby, we show that the potential failures of the AUTOSAR Adaptive platform as exemplary undependable system can be handled by our concept. In overall, we outline a way of integrating inherently undependable adaptive systems into safety-critical CPS.
  • Publication
    B-space. Dynamic management and assurance of open systems of systems
    Connected cars, freely configurable operating rooms, or autonomous harvesting fleets: dynamically emerging open systems of systems will shape a new generation of systems opening up a vast potential for new kinds of applications. In light of the hard-to-predict structure and behavior of such systems, assuring their safety will require some disruptive changes of established safety paradigms. Combining current research results from different disciplines with industrial experience, this paper dares to think out of the box and look beyond the limits of traditional safety assurance. It structures upcoming challenges posed by the emergence of open systems of systems, tries to shift existing paradigms to meet those new challenges, and proposes an abstract conceptual framework building on comprehensive interlinked multi-concern runtime models for dynamically assuring the safety as well as other properties of open systems of systems. As there currently is no comprehensive realization of the framework, we discuss what kind of approaches could fit into which parts of the framework and exemplify this for the case of conditional safety certificates.
  • Publication
    Conditional safety certification of open adaptive systems
    In recent years it has become more and more evident that openness and adaptivity are key characteristics of next-generation distributed systems. The reason for this is not least due to the advent of computing trends like ubiquitous computing, ambient intelligence, and cyber-physical systems, where systems are usually open for dynamic integration and able to react adaptively to changing situations. Despite being open and adaptive, it is a common requirement for such systems to be safe. However, traditional safety assurance techniques, both state-of-the-practice and state-of-the-art ones, are not sufficient in this context. We have recently developed some initial solution concepts based on conditional safety certificates and corresponding runtime analyses. In this article we show how to operationalize these concepts. To this end, we present in detail how to specify conditional safety certificates, how to transform them into suitable runtime models, and how these models finally support dynamic safety evaluations.
  • Publication
    A safety roadmap to cyber-physical systems
    In recent years, the term cyber-physical systems has emerged to characterize a new generation of embedded systems. In cyber-physical systems, embedded systems will be open in the sense that they will dynamically interconnect with other systems and will be able to dynamically adapt to changing runtime contexts. Such open adaptive systems provide a huge potential for society and for the economy. On the other hand, however, openness and adaptivity make it hard or even impossible for developers to predict a system's dynamic structure and behavior. This impedes the assurance of important system quality properties, especially safety and reliability. Safety assurance of cyber-physical systems will therefore be both one of the most urgent and one of the most challenging research questions of the next decade. This chapter analyzes the state of the art in order to identify open gaps and suggests a runtime safety assurance framework for cyber-physical systems to structure ongoing and future research activities.
  • Publication
    Conditional safety certification of open adaptive systems
    In recent years it has become more and more evident that openness and adaptivity are key characteristics of next-generation distributed systems. The reason for this is not least due to the advent of computing trends like Ubiquitous Computing, Ambient Intelligence, and Cyber-Physical Systems, where systems are usually open for dynamic integration and able to react adaptively to changing situations. Despite being open and adaptive, it is a common requirement for such systems to be safe. However, traditional safety assurance techniques, both state-of-the-practice and state-of-the-art ones, are not sufficient in this context. We have recently developed some initial solution concepts based on conditional safety certificates and corresponding runtime analyses. In this article we show how to operationalize these concepts. To this end, we present in detail how to specify conditional safety certificates, how to transform them into suitable runtime models, and how these models finally support dynamic safety evaluations.
  • Publication
    Approaching runtime trust assurance in open adaptive systems
    In recent years it has become more and more evident that the ability of systems to adapt themselves is an increasingly important requirement. This is not least driven by emerging computing trends like Ubiquitous Computing, Ambient Intelligence, and Cyber Physical Systems, where systems have to react on changing user needs, service/device availability and resource situations. Despite being open and adaptive it is a common requirement for such systems to be trustworthy, whereas traditional assurance techniques for related system properties like safety, reliability and security are not sufficient in this context. We recently developed the Plug&Safe approach for composition time safety assurance in systems of systems. In this position paper we provide an overview on Plug&Safe, elaborate the different facets of trust, and discuss how our approach can be augmented to enable trust assurance in open adaptive systems.
  • Publication
    A safety engineering framework for open adaptive systems
    In recent years it has become more and more evident that openness and adaptivity are key characteristics of next generation distributed systems. The reason for that is not least the advent of computing trends like Ubiquitous Computing, Ambient Intelligence, and Cyber Physical Systems, where systems are usually open for dynamic integration and able to react adaptively to changing situations. Despite being open and adaptive it is a common requirement for such systems to be safe. However, traditional safety assurance techniques, both state-of-the-practice and state-of-the-art, are not sufficient in this context. We recently developed some initial solution concepts based on conditional safety certificates and corresponding runtime analyses. In this paper we show how to operationalize these concepts. To this end we present in detail how to specify conditional safety certificates, how to transform them into suitable runtime models, and how these models finally support dynamic safety evaluations.
  • Publication
    A safety engineering framework for open adaptive systems
    In recent years it has become more and more evident that openness and adaptivity are key characteristics of next generation distributed systems. The reason for that is not least the advent of computing trends like Ubiquitous Computing, Ambient Intelligence, and Cyber Physical Systems, where systems are usually open for dynamic integration and able to react adaptively to changing situations. Despite being open and adaptive it is a common requirement for such systems to be safe. However, traditional safety assurance techniques, both state-of-the-practice and state-of-the-art, are not sufficient in this context. We recently developed some initial solution concepts based on conditional safety certificates and corresponding runtime analyses. In this paper we show how to operationalize these concepts. To this end we present in detail how to specify conditional safety certificates, how to transform them into suitable runtime models, and how these models finally support dynamic safetyevaluations.
  • Publication
    Approaching runtime trust assurance in open adaptive systems
    In recent years it has become more and more evident that the ability of systems to adapt themselves is an increasingly important requirement. This is not least driven by emerging computing trends like Ubiquitous Computing, Ambient Intelligence, and Cyber Physical Systems, where systems have to react on changing user needs, service/device availability and resource situations. Despite being open and adaptive it is a common requirement for such systems to be trustworthy, whereas traditional assurance techniques for related system properties like safety, reliability and security are not sufficient in this context. We recently developed the Plug&Safe approach for composition time safety assurance in systems of systems. In this position paper we provide an overview on Plug&Safe, elaborate the different facets of trust, and discuss how our approach can be augmented to enable trust assurance in open adaptive systems.