Now showing 1 - 8 of 8
  • Publication
    Safety4Ventilators - Public Project Report
    (Fraunhofer IESE, 2021) ; ;
    Naveed, Akram Mohammed
    ;
    Maier, Oliver
    ;
    Since December 2019, the world population has experienced one of the worst widespread lung disease pandemics of this century. Due to its high human-to-human transmission rate and lack of known medication and vaccination, COVID-19 caught most medical and pharmaceutical experts by surprise. The nature and the known effects of the novel SARS-CoV-19 virus led to a significant rise in demand for ICU ventilators. Together with the Kaiserslautern University of Applied Sciences (German: Hochschule Kaiserslautern, abbrev. HS KL), we present and provide a walkthrough across the safety engineering lifecycle for a proprietary ventilator, the latter being developed courtesy of our HS KL colleagues. The IEC 61508 Safety Engineering Lifecycle is applied as a case study, using our proprietary tool safeTbox.
  • Publication
    Engineering and Hardening of Functional Fail-Operational Architectures for Highly Automated Driving
    ( 2019) ; ;
    Feth, Patrik
    ;
    Fukuda, Takeshi
    ;
    Ishigooka, Tasuku
    ;
    Otsuka, Satoshi
    ;
    ;
    Yoshimura, Kentaro
    Rising automation levels in the automotive domain demand a shift from the fail-safe to the fail-operational paradigm. Fail-operational architectures and behaviors are inherently more complex and thus require special diligence from a safety engineering point of view. In this work, we present how we tailored and applied a methodology that facilitates the design of fail-operational architectures from early design stages on by enabling informed judgment regarding the gradually evolved architecture's fitness for purpose. The method specifically considers resilience regarding dynamic changes in environmental conditions, including V2X aspects and internal capabilities. In this paper, we summarize our experiences in applying the methodology in a highway pilot case study. Furthermore, we present essential extensions of the methodology for modeling and evaluating the operational design domain.
  • Publication
    Towards safety-awareness and dynamic safety management
    Future safety-critical systems will be highly automated or even autonomous and they will dynamically cooperate with other systems as part of a comprehensive ecosystem. This together with increasing utilization of artificial intelligence introduces uncertainties on different levels, which detriment the application of established safety engineering methods and standards. These uncertainties might be tackled by making systems safety-aware and enabling them to manage themselves accordingly. This paper introduces a corresponding conceptual dynamic safety management framework incorporating monitoring facilities and runtime safety-models to create safety-awareness. Based on this, planning and execution of safe system optimizations can be carried out by means of self-adaptation. We illustrate our approach by applying it for the dynamic safety assurance of a single car.
  • Publication
    Towards integrating undependable self-adaptive systems in safety-critical environments
    Modern cyber-physical systems (CPS) integrate more and more powerful computing power to master novel applications and adapt to changing situations. A striking example is the recent progression in the automotive market towards autonomous driving. Powerful artificial intelligent algorithms must be executed on high performant parallelized platforms. However, this cannot be employed in a safe way, as the platforms stemming from the consumer electronics (CE) world still lack required dependability and safety mechanisms. In this paper, we present a concept to integrate undependable self-adaptive subsystems into safety-critical environments. For this, we introduce self-adaptation envelopes which manage undependable system parts and integrate within a dependable system. We evaluate our approach by a comprehensive case study of autonomous driving. Thereby, we show that the potential failures of the AUTOSAR Adaptive platform as exemplary undependable system can be handled by our concept. In overall, we outline a way of integrating inherently undependable adaptive systems into safety-critical CPS.
  • Publication
    A Context-Aware, Confidence-Disclosing and Fail-Operational Dynamic Risk Assessment Architecture
    Future automotive systems will be highly automated and they will cooperate to optimize important system qualities and performance. Established safety assurance approaches and standards have been designed with manually controlled stand-alone systems in mind and are thus not fit to ensure safety of this next generation of systems. We argue that, given frequent dynamic changes and unknown contexts, systems need to be enabled to dynamically assess and manage their risks. In doing so, systems become resilient from a safety perspective, i.e. they are able to maintain a state of acceptable risk even when facing changes. This work presents a Dynamic Risk Assessment architecture that implements the concepts of context-awareness, confidence-disclosure and fail-operational. In particular, we demonstrate the utilization of these concepts for the calculation of automotive collision risk metrics, which are at the heart of our architecture.
  • Publication
    Modellbasierter Entwurfsassistent zur Auslegung spezifischer Architektur- und Konfigurationseigenschaften von Kommunikationsnetzen mit Echtzeitanforderungen
    Industrielle Netzwerke werden immer komplexer durch den Einsatz neuer Technologien wie Time Sensitive Networking (TSN). Die Anforderungen werden zudem verschärft durch sich ändernde gesetzliche Vorgaben wie z.B. bei Smart Grids. Planer solcher Netzwerke haben häufig spezifische Echtzeitanforderungen, Datenraten und Redundanzanforderungen zu beachten, deren Realisierung u.a. abhängig sind von der Leistungsfähigkeit und der Topologie des Netzwerkes. Designalternativen sollten daher quantitativ bewertbar sein, um individuelle Planungsaspekte erweiterbar sein und eine generelle Anwendbarkeit aufweisen. Da diese Kriterien aktuell von keinem verfügbaren Planungswerkzeug erfüllt werden, wurde in diesem Beitrag mit Hilfe von Matlab Simulink® ein generisches und skalierbares Modell von Netzwerkkomponenten erstellt. Diese Komponenten können parametriert und in einer anwendungsnahen Topologie kombiniert werden. Leistungsqualifizierende Parameter wie die Echtzeitfähigkeit, Auslastung der Komponenten, Ausfallsicherheit und die Topologie wurden zur Bewertung von Designszenarien eines beispielhaften Windparks herangezogen. Eine Erweiterung des Modells ermöglicht es darüberhinausgehend die Auswirkungen von zukünftigen Technologien, wie z.B. TSN zu analysieren.
  • Publication
    Universelle Echtzeit-Ethernet Architektur zur Integration in rekonfigurierbare Automatisierungssysteme
    ( 2015)
    Ax, Johannes
    ;
    Aurel, Buda
    ;
    ;
    Hartfield, John
    ;
    Dürkop, Lars
    ;
    Jungeblut, Thorsten
    ;
    ;
    Vedral, Andreas
    ;
    Rückert, Ulrich
    Das neue Geschäftsmodell, das mit der Industrie 4.0 verbunden ist, verändert ein etab-liertes Dogma der Automatisierungsbranche: Anlagen wurden auf hohen Durchsatz der immer gleichen Produktformate optimiert. Während derartige Systeme mit bekannten Maßnahmen auto-matisierbar sind, stellt die Variantenfertigung eher ein Automatisierungshindernis dar. Für eine individualisierte Produktion ist die Rekonfigurierbarkeit von Industrieanlagen ein wichtiger Fak-tor. Die Modularisierung und automatische Konfiguration sind hierbei wesentliche Triebkräfte. Im Rahmen dieser Arbeit wird eine Basisarchitektur für eine intelligente Netzwerkkomponente vorge-stellt, die ohne manuelle Konfiguration in unterschiedlichen Echtzeit-Ethernet-Netzwerken einge-setzt werden kann.
  • Publication
    Conditional safety certification for open adaptive systems
    (Fraunhofer Verlag, 2014)
    Over the last decade, it has become increasingly evident that nextgeneration systems will be strongly distributed, networked heterogeneous systems of systems. New corresponding computing paradigms have been coined along the way, such as Ubiquitous Computing, Ambient Intelligence, and, more recently, Cyber-Physical Systems. It is expected that such systems will be open with respect to dynamic integration and adaptive with respect to dynamic changes in their environments. Considering that many application domains of such next-generation systems are inherently safety-critical, it is a common requirement for them to be safe - despite being open and adaptive. However, established safety assurance and certification approaches, both state-of-the-practice and state-of-the-art ones, are not applicable to that context. As a first solution approach, this thesis presents a framework that enables conditional safety certification for open adaptive systems. Modular conditional safety certificates (ConSerts) are introduced as the core solution concept. ConSerts contain a series of formalized guarantee-demand relationships and can be composed and evaluated at runtime. The evaluation result can be interpreted as a runtime safety certificate that supports the autonomous decision of whether the integrated system is currently safe to run or not. For the operationalization of ConSerts, adequate support for dynamic integration and adaptation as well as appropriate modularization concepts and mapping functions have been established. Moreover, it is shown how the ConSert models can be transformed into a suitable runtime representation, and mechanisms and protocols have been defined that operate on these runtime representations to conduct the dynamic evaluation of dynamically integrated systems of systems. Finally, it is elaborated how the presented approach can be integrated with established engineering methodologies to provide guidance with respect to the required safety engineering backbone for conditional safety certification in concrete settings. The results of the validation show that the approach is feasible and can be operationalized effectively, thus potentially opening up a path towards approaches to runtime safety certification of open adaptive system. At the same time, these results highlight limitations and areas of future improvement.