Now showing 1 - 10 of 18
  • Publication
    Mixture of Experts of Neural Networks and Kalman Filters for Optical Belt Sorting
    ( 2022)
    Thumm, Jakob
    ;
    Reith-Braun, Marcel
    ;
    Pfaff, Florian
    ;
    Hanebeck, Uwe D.
    ;
    Flitter, Merle
    ;
    ; ; ;
    Bauer, Albert
    ;
    Kruggel-Emden, Harald
    In optical sorting of bulk material, the composition of particles may frequently change. State-of-the-art sorting approaches rely on tuning physical models of the particle motion. The aim of this work is to increase the prediction accuracy in complex, fast-changing sorting scenarios with data-driven approaches. We propose two neural network (NN) experts for accurate prediction of a priori known particle types. To handle the large variety of particle types that can occur in real-world sorting scenarios, we introduce a simple but effective mixture of experts approach that combines NNs with hand-crafted motion models. Our new method not only improves the prediction accuracy for bulk material consisting of many particle classes, but also proves to be very adaptive and robust to new particle types.
  • Publication
    Phenoliner 2.0: RGB and near-infrared (NIR) image acquisition for an efficient phenotyping in grapevine research
    ( 2021)
    Zheng, Xiaorong
    ;
    ; ; ;
    Töpfer, Reinhard
    ;
    Kicherer, Anna
    In grapevine research, phenotyping needs to be done for different traits such as abiotic and biotic stress. This phenotypic data acquisition is very time-consuming and subjective due to the limitation of manual visual estimation. Sensor-based approaches showed an improvement in objectivity and throughput in the past. For example, the 'Phenoliner' a phenotyping platform, based on a modified grape harvester, is equipped with two different sensor systems to acquire images in the field. It has so far been used in grapevine research for different research questions to test and apply different sensor systems. However, the driving speed for data acquisition has been limited to 0.5 - 1 km/ h due to capacity of image acquisition frequency and storage. Therefore, a faster automatic data acquisition with high objectivity and precision is desirable to increase the phenotyping efficiency. To this aim, in the present study a prism-based simultaneous multispectral camera system was installed in the tunnel of the 'Phenoliner' with an artificial broadband light source for image acquisition. It consists of a visible color channel from 400 to 670 nm, a near infrared (NIR) channel from 700 to 800 nm, and a second NIR channel from 820 to 1,000 nm. Compared to the existing camera setup, image recording could be improved to at least 10 images per second and a driving speed of at least 5 km/h. Each image is geo-referenced using a real-time-kinematic (RTK)-GPS system. The setup of the sensor system was tested on seven cultivars (Riesling, Pinot Noir, Chardonnay, Dornfelder, Dapako, Pinot Gris, and Phoenix) with and without symptoms of biotic stress in the vineyards of Geilweilerhof, Germany. Image analysis aims to segment images into four categories: background, leaves, grapes and wood to further detect the biotic stress status in these categories. Therefore, images have been annotated accordingly and first results will be shown.
  • Publication
    Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking
    ( 2021) ;
    Pfaff, Florian
    ;
    Pieper, Christoph
    ;
    ;
    Noack, Benjamin
    ;
    Kruggel-Emden, Harald
    ;
    ;
    Hanebeck, Uwe D.
    ;
    Wirtz, Siegmar
    ;
    Scherer, Viktor
    ;
    Sensor-based sorting is a machine vision application that has found industrial application in various fields. An accept-or-reject task is executed by separating a material stream into two fractions. Current systems use line-scanning sensors, which is convenient as the material is perceived during transportation. However, line-scanning sensors yield a single observation of each object and no information about their movement. Due to a delay between localization and separation, assumptions regarding the location and point in time for separation need to be made based on the prior localization. Hence, it is necessary to ensure that all objects are transported at uniform velocities. This is often a complex and costly solution. In this paper, we propose a new method for reliably separating particles at non-uniform velocities. The problem is transferred from a mechanical to an algorithmic level. Our novel advanced image processing approach includes equipping the sorter with an area-scan camera in combination with a real-time multiobject tracking system, which enables predictions of the location of individual objects for separation. For the experimental validation of our approach, we present a modular sorting system, which allows comparing sorting results using a line-scan and area-scan camera. Results show that our approach performs reliable separation and hence increases sorting efficiency.
  • Publication
    SmartSpectrometer - Embedded Optical Spectroscopy for Applications in Agriculture and Industry
    The ongoing digitization of industry and agriculture can benefit significantly from optical spectroscopy. In many cases, optical spectroscopy enables the estimation of properties such as substance concentrations and compositions. Spectral data can be acquired and evaluated in real time, and the results can be integrated directly into process and automation units, saving resources and costs. Multivariate data analysis is needed to integrate optical spectrometers as sensors. Therefore, a spectrometer with integrated artificial intelligence (AI) called SmartSpectrometer and its interface is presented. The advantages of the SmartSpectrometer are exemplified by its integration into a harvesting vehicle, where quality is determined by predicting sugar and acid in grapes in the field.
  • Publication
    Motion-based visual inspection of optically indiscernible defects on the example of hazelnuts
    ( 2021) ;
    Shevchyk, Anja
    ;
    Flitter, Merle
    ;
    ; ;
    Hanebeck, Uwe D.
    ;
    Automatic quality control has long been an integral part of the processing of food and agricultural products. Visual inspection offers solutions for many issues in this context and can be employed in the form of sensor-based sorting to automatically remove foreign and low quality entities from a product stream. However, these methods are limited to defects that can be made visible by the employed sensor, which usually restricts the system to defects appearing on the surface. An alternative non-visual solution lies in impact-acoustic methods, which do not suffer from this constraint. However, these are strongly limited in terms of material throughput and consequently not suitable for large scale industrial application. In this paper, we present a novel approach that performs inspection based on optically acquired motion data. A high-speed camera captures image sequences of test objects during a transportation process on a chute with a specific structured surface. The trajectory data is then used to classify test objects based on their motion behavior. The approach is evaluated experimentally on the example of distinguishing defect-free hazelnuts from ones that suffer from insect damage. Results show that by merely utilizing the motion data, a recognition rate of up to for undamaged hazelnuts can be achieved. A major advantage of our approach is that it can be integrated in sensor-based sorting systems and is suitable for high throughput applications.
  • Publication
    Developing a handheld NIR sensor for the detection of ripening in grapevine
    ( 2021)
    Gebauer, Lucie
    ;
    ;
    Zheng, Xiaorong
    ;
    ; ;
    Töpfer, Reinhard
    ;
    Kicherer, Anna
    It has already been proven that near infrared (NIR) reflectance spectroscopy can be used to measure the ripeness of grapes by the determination of reducing sugar and acid contents. Until now, winegrowers need to collect a random one hundred berries sample per plot, to measure these parameters destructively for the estimation of the ideal harvest time of the gained product. Meanwhile, inexpensive sensors are available, to build convenient instruments for the non-destructive, low-priced and fast control of ripening parameters in the vineyard. For this, a small device including a NIR sensor (900 nm - 1700 nm / 1300 nm - 2600 nm) was built from a Raspberry Pi 3 and a NIR sensor. Spectra of individual berries, sampled from six different Vitis vinifera (L.) cultivars (Riesling, Chardonnay, Pinot Noir, Dornfelder, Pinot Gris and Dakapo) were collected. Corresponding reference data were determined with high performance liquid chromatography (HPLC). Samples were taken from different fruit-, as well as cluster zones and from the beginning of veraison until after harvest, to ensure a broad range of ingredients and the ripening properties of different berries from the vine. White, as well as red varieties were used to establish the built sensor as a viable tool for ripening prediction for mainly cultivated vines. Spectra of teinturier berries with strongly coloured flesh or skin were collected to verify its accuracy for these cultivars, too. This study is the first that systematically investigates the ripening parameters of a whole vineyard with a handheld sensor. The sensor can be used in viticulture practice to detect the ripening process and ideal harvest time due to effectiveness and simplicity.
  • Publication
    From Visual Spectrum to Millimeter Wave: A Broad Spectrum of Solutions for Food Inspection
    The consequences of food adulteration can be far reaching. In the past, inexpensive adulterants were used to inflate different products, leading to severe health issues. Contamination of food has many causes and can be physical(plant stems in tea), chemical (melamine in infant formula), or biological (bacterial contamination). Employing suitable sensor systems along the production process is a requirement for food safety. In this article, different approaches to food inspection are illustrated, and exemplary scenarios outline the potential of different sensor systems along the spectrum.
  • Patent
    Identifizierung eines oder mehrerer spektraler Merkmale in einem Spektrum einer Probe für eine Inhaltsstoffanalyse
    Die Erfindung betrifft ein Verfahren zum Identifizieren eines oder mehrerer spektraler Merkmale in einem Spektrum (4, 5) einer Probe für eine Inhaltsstoffanalyse der Probe, mit einem Bereitstellen des Spektrums (4, 5), einem Vorgeben einer Approximationsfunktion (6), welche eine stetig differenzierbare mathematische Funktion ist, einem jeweiliges Bilden einer Ableitung (n-1)-ten Grades (7, 8, 9) des Spektrums (4, 5) und der Approximationsfunktion (6), wobei die Zahl n>1 ist, einem Erzeugen einer Korrelationsmatrix (10) aus den beiden Ableitungen (n-1)-ten Grades (7, 8, 9), und einem jeweiligen Identifizieren des spektralen Merkmals oder eines der spektralen Merkmale in Abhängigkeit jeweils eines lokalen Extremums (i) der Korrelationsmatrix (10) für zumindest ein Extremum (i) der Korrelationsmatrix (10), um die Inhaltsstoffanalyse der Probe zu vereinfachen.