Now showing 1 - 6 of 6
  • Publication
    Numerical modelling of an optical belt sorter using a DEM-CFD approach coupled with particle tracking and comparison with experiments
    ( 2018)
    Pieper, C.
    ;
    Pfaff, F.
    ;
    ;
    Kruggel-Emden, H.
    ;
    Wirtz, S.
    ;
    Noack, B.
    ;
    ;
    Scherer, V.
    ;
    Hanebeck, U.D.
    ;
    ;
    State-of-the-art optical sorting systems suffer from delays between the particle detection and separation stage, during which the material movement is not accounted for. Commonly line scan cameras, using simple assumptions to predict the future particle movement, are employed. In this study, a novel prediction approach is presented, where an area scan camera records the particle movement over multiple time steps and a tracking algorithm is used to reconstruct the corresponding paths to determine the time and position at which the material reaches the separation stage. In order to assess the benefit of such a model at different operating parameters, an automated optical belt sorter is numerically modelled and coupled with the tracking procedure. The Discrete Element Method (DEM) is used to describe the particle-particle as well as particle-wall interactions, while the air nozzles required for deflecting undesired material fractions are described with Computational Fluid Dynamics (CFD). The accuracy of the employed numerical approach is ensured by comparing the separation results of a predefined sorting task with experimental investigations. The quality of the aforementioned prediction models is compared when utilizing different belt lengths, nozzle activation durations, particle types, sampling frequencies and detection windows. Results show that the numerical model of the optical belt sorter is able to accurately describe the sorting system and is suitable for detailed investigation of various operational parameters. The proposed tracking prediction model was found to be superior to the common line scan camera method in all investigated scenarios. Its advantage is especially profound when difficult sorting conditions, e.g. short conveyor belt lengths or uncooperative moving bulk solids, apply.
  • Publication
    Real-time motion prediction using the chromatic offset of line scan cameras
    ( 2017)
    Pfaff, F.
    ;
    ;
    Aristov, M.
    ;
    Noack, B.
    ;
    ;
    Hanebeck, U.
    ;
    ; ;
    Pieper, C.
    ;
    Kruggel-Emden, H.
    ;
    Wirtz, S.
    ;
    Scherer, V.
    Auf dem heutigen Stand der Technik der optischen Schüttgutsortierung werden Zeilenkameras mit einfachen Annahmen über die Teilchenbewegung kombiniert, um eine Ausschleusung bestimmter Teilchen zu ermöglichen. Kürzlich haben wir einen experimentellen optischen Bandsortierer mit einer Flächenkamera ausgestattet und gezeigt, dass durch das Verfolgen der Teilchen des Schüttguts die Güte der Vorhersagen und somit auch der Ausschleusung verbessert werden kann. In dieser Arbeit nutzen wir den Farbversatz zwischen den Farbkanälen einer Farbzeilenkamera, um in Echtzeit Informationen über die Bewegung der Teilchen abzuleiten. Dieser Ansatz erlaubt es, die Vorhersagen heutiger optischer Bandsortierer zu verbessern, ohne dass deren Hardware dafür angepasst werden muss.
  • Publication
    Numerical modelling of the separation of complex shaped particles in an optical belt sorter using a DEM-CFD approach and comparison with experiments
    ( 2017)
    Pieper, C.
    ;
    ;
    Pfaff, F.
    ;
    Kruggel-Emden, H.
    ;
    ;
    Noack, B.
    ;
    Wirtz, S.
    ;
    Scherer, V.
    ;
    Längle, T.
    ;
    Hanebeck, U.D.
    ;
    In the growing field of bulk solids handling, automated optical sorting systems are of increasing importance. However, the initial sorter calibration is still very time consuming and the precise optical sorting of many materials still remains challenging. In order to investigate the impact of different operating parameters on the sorting quality, a numerical model of an existing modular optical belt sorter is presented in this study. The sorter and particle interaction is described with the Discrete Element Method (DEM) while the air nozzles required for deflecting undesired material fractions are modelled with Computation Fluid Dynamics (CFD). The correct representation of the resulting particle-fluid interaction is realized through a one-way coupling of the DEM with CFD. Complex shaped particle clusters are employed to model peppercorns also used in experimental investigations. To test the correct implementation of the utilized models, the particle mass flow within the sorter is compared between experiment and simulation. The particle separation results of the developed numerical model of the optical sorting system are compared with matching experimental investigations. The findings show that the numerical model is able to predict the sorting quality of the optical sorting system with reasonable accuracy.
  • Publication
    Numerical investigation of optical sorting using the discrete element method
    ( 2017)
    Pieper, C.
    ;
    Kruggel-Emden, H.
    ;
    Wirtz, S.
    ;
    Scherer, V.
    ;
    Pfaff, F.
    ;
    Noack, B.
    ;
    Hanebeck, U.D.
    ;
    ; ; ;
    Automated optical sorting systems are important devices in the growing field of bulk solids handling. The initial sorter calibration and the precise optical sorting of many materials is still very time consuming and difficult. A numerical model of an automated optical belt sorter is presented in this study. The sorter and particle interaction is described with the Discrete Element Method (DEM) while the separation phase is considered in a post processing step. Different operating parameters and their influence on sorting quality are investigated. In addition, two models for detecting and predicting the particle movement between the detection point and the separation step are presented and compared, namely a conventional line scan camera model and a new approach combining an area scan camera model with particle tracking.
  • Publication
    Improving optical sorting of bulk materials using sophisticated motion models
    ( 2016)
    Pfaff, F.
    ;
    Pieper, C.
    ;
    ;
    Noack, B.
    ;
    Kruggel-Emden, H.
    ;
    ;
    Hanebeck, U.D.
    ;
    Wirtz, S.
    ;
    Scherer, V.
    ;
    ;
    Visual properties are powerful features to reliably classify bulk materials, thereby allowing to detect defect or low quality particles. Optical belt sorters are an established technology to sort based on these properties, but they suffer from delays between the simultaneous classification and localization step and the subsequent separation step. Therefore, accurate models to predict the particles' motions are a necessity to bridge this gap. In this paper, we explicate our concept to use sophisticated simulations to derive accurate models and optimize the flow of bulk solids via adjustments of the sorter design. This allows us to improve overall sorting accuracy and cost efficiency. Lastly, initial results are presented.
  • Publication
    Numerical modeling of an automated optical belt sorter using the Discrete Element Method
    ( 2016)
    Pieper, C.
    ;
    ;
    Pfaff, F.
    ;
    Kruggel-Emden, H.
    ;
    Wirtz, S.
    ;
    ;
    Noack, B.
    ;
    Scherer, V.
    ;
    ; ;
    Hanebeck, U.
    Optical sorters are important devices in the processing and handling of the globally growing material streams. The precise optical sorting of many bulk solids is still difficult due to the great technical effort necessary for transport and flow control. In this study, particle separation with an automated optical belt sorter is modeled numerically. The Discrete Element Method (DEM) is used to model the sorter and calculate the particle movement as well as particle - particle and particle - wall interactions. The particle ejection stage with air valves is described with the help of a MATLAB script utilizing particle movement information obtained with the DEM. Two models for predicting the particle movement between the detection and separation phase are implemented and compared. In the first model, it is assumed that the particles are moving with belt velocity and without any cross movements and a conventional line scan camera is used for particle detection. In the second model, a more sophisticated approach is employed where the particle motion is predicted with an area scan camera combined with a tracking algorithm. In addition, the influence of different operating parameters like particle shape or conveyor belt length on the separation quality of the system is investigated. Results show that numerical simulations can offer detailed insight into the operation performance of optical sorters and help to optimize operating parameters. The area scan camera approach was found to be superior to the standard line scan camera model in almost all investigated categories.