Now showing 1 - 4 of 4
  • Publication
    Implications of hydrogen import prices for the German energy system in a model-comparison experiment
    With its ability to store and transport energy without releasing greenhouse gases, hydrogen is considered an important driver for the decarbonisation of energy systems. As future hydrogen import prices from global markets are subject to large uncertainties, it is unclear what impact different hydrogen and derivative import prices will have on the future German energy system. To answer that research question, this paper explores the impact of three different import price scenarios for hydrogen and its derivatives on the German energy system in a climate-neutral setting for Europe in 2045 using three different energy system models. The analysis shows that the quantities of electricity generated as well as the installed capacities for electricity generation and electrolysis increase as the hydrogen import price rises. However, the resulting differences between the import price scenarios vary across the models. The results further indicate that domestic German (and European) hydrogen production is often cost-efficient.
  • Publication
    To charge or not to charge? Using Prospect Theory to model the tradeoffs of electric vehicle users
    ( 2024) ;
    Bosch, Antonia
    ;
    Chappin, Emile J.L.
    ;
    Liesenhoff, Fabian
    ;
    ;
    Vries, Laurens J. de
    Electric vehicle (EV) users who aim to become flexibility providers face a tradeoff between staying in control of charging and minimizing their electricity costs. The common practice is to charge immediately after plugging in and use more electricity than necessary. Changing this can increase the EV's flexibility potential and reduce electricity costs. Our extended electricity cost optimization model systematically examines how different changes to this practice influence electricity costs. Based on the Prospect Theory and substantiated by empirical data, it captures EV users' tradeoff between relinquishing control and reducing charging costs. Lowering the need to control charging results in disproportionally large savings in electricity costs. This finding incentivizes EV-users to relinquish even more control of charging. We analyzed changes to two charging settings that express the need for control. We found that changing only one setting offsets the other and reduces its positive effect on cost savings. Behavioral aspects, such as rebound effects and inertia that are widely documented in the literature, support this finding and underline the fit of our model extension to capture different charging behaviors. Our findings suggest that service providers should convince EV-users to relinquish control of both settings.
  • Publication
    Assessing the conditions for economic viability of dynamic electricity retail tariffs for households
    The success of the energy transition relies on effectively utilizing flexibility in the power system. Dynamic tariffs are a highly discussed and promising innovation for incentivizing the use of residential flexibility. However, their full potential can only be realized if households achieve significant benefits. This paper specifically addresses this topic. We examine the leverage of household flexibility and the financial benefits of using dynamic tariffs, considering household heterogeneity, the costs of home energy management systems and smart meters, the impact of higher electricity prices and price spreads and the differences between types of prosumers. To comprehensively address this topic, we use the EVaTar-building model, a simulation framework that includes embedded optimization designed to simulate household electricity consumption patterns under the influence of a home energy management system or in response to dynamic tariffs. The study's main finding is that households can achieve significant cost savings and increase flexibility utilization by using a home energy management system and dynamic electricity tariffs, provided that electricity prices and price spreads reach higher levels. When comparing price levels in a low and high electricity price scenario, with an increase of the average electricity price by 15.2 €ct/kWh (67% higher than the average for the year 2019) and an increase of the price spread by 8.9 €ct/kWh (494% higher), the percentage of households achieving cost savings increases from 3.9% to 62.5%. Households with both an electric vehicle and a heat pump observed the highest cost benefits. Sufficiently high price incentives or sufficiently low costs for home energy management systems and metering point operation are required to enable households to mitigate rising electricity costs and ensure residential flexibility for the energy system through electric vehicles and heat pumps.
  • Publication
    Integrating methods and empirical findings from social and behavioural sciences into energy system models - motivation and possible approaches
    ( 2020) ;
    Dobbins, Audrey
    ;
    Kockel, Christina
    ;
    Steinbach, Jan
    ;
    Fahl, Ulrich
    ;
    Wille, Farina
    ;
    Globisch, Joachim
    ;
    Wassermann, Sandra
    ;
    Droste-Franke, Bert
    ;
    Hauser, Wolfgang
    ;
    Hofer, Claudia
    ;
    Nolting, Lars
    ;
    The transformation of the energy system is a highly complex process involving many dimensions. Energy system models help to understand the process and to define either target systems or policy measures. Insights derived from the social sciences are not sufficiently represented in energy system models, but address crucial aspects of the transformation process. It is, therefore, necessary to develop approaches to integrate results from social science studies into energy system models. Hence, as a result of an interdisciplinary discourse among energy system modellers, social scientists, psychologists, economists and political scientists, this article explains which aspects should be considered in the models, how the respective results can be collected and which aspects of integration into energy system models are conceivable to provide an overview for other modellers. As a result of the discourse, five facets are examined: Investment behaviour (market acceptance), user behaviour, local acceptance, technology innovation and socio-political acceptance. Finally, an approach is presented that introduces a compound of energy system models (with a focus on the macro and micro-perspective) as well as submodels on technology genesis and socio-political acceptance, which serves to gain a more fundamental knowledge of the transformation process.