Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Impacts of avalanche effects of price-optimized electric vehicle charging - Does demand response make it worse?

2021 , Kühnbach, Matthias , Stute, Judith , Klingler, Anna-Lena

Electric vehicles (EVs) are expected to provide substantial potential for demand response (DR) and, thus, the integration of renewable electricity sources in the future energy system. However, DR can also have noticeable negative consequences, so-called avalanche effects. We systematically assess under which circumstances avalanche effects occur and what impact they have on the electricity system and cost savings for EV owners. Our results show that DR can provoke unwanted avalanche effects, which are particularly strong beyond 2030, when the leverage of EV charging will have increased to a significant level. It is possible to avoid avalanche effects by using a dynamically updated DR signal. If this is used, our findings confirm that shifting charging load from peaks to hours of low or negative residual load reduces the peak and variance of residual load and facilitates the integration of renewables.

No Thumbnail Available
Publication

The flexibility deployment of the service sector - a demand response modelling approach coupled with evidence from a market research survey

2020 , Wohlfarth, Katharina , Klingler, Anna-Lena , Eichhammer, Wolfgang

The flexible use of energy is seen as a key option to facilitate the integration of volatile renewable energy sources (RES) into the electricity sector. In this study, we focus on flexibility in the service sector, in terms of flexible technologies, experiences and willingness to participate in demand response (DR) actions. We analyse the technically possible future deployment of flexibility, the practically possible deployment of flexibility and also take the reduction of RES surplus electricity into account. Our results are based on survey data from over 1.500 service sector companies (offices, trade, hospitality) and modelling results with a time resolved DR model (eLOAD). The data show that service sector companies have few experiences in DR so far, which is among others caused by the unfavourable regulatory conditions to participate in flexibility markets. The currently most common forms of DR are load shedding and flexible tariffs and optimized purchase of electricity. Participation in DR varies between subsectors and company sizes, but on average all subsectors are interested in extending (automated) DR measures in the future. Our projections result in a possible technical deployment of flexible electricity of 7.74 TWh of which about 510 GWh can be used to reduce renewable surplus electricity (in case of a 50% RES share). In case of a 80% RES share, this can reach 1.63 TWh. Integrating the willingness of companies to participate in DR, the practical possible deployment results in 131 GWh reduction of renewable surplus electricity. This can be interpreted as a first-mover potential for DR. Future increased need for flexible demand could raise the profit for the companies and their willingness in participating in DR. Further analyses on most promising target groups of companies would help to tap the potentials and to create market offers as well as policies to incentivise participation.

No Thumbnail Available
Publication

Exploring the potential of a German Living Lab research infrastructure for the development of low resource products and services

2014 , Geibler, Justus von , Erdmann, Lorenz , Liedtke, Christa , Rohn, Holger , Stabe, Matthias , Berner, Simon , Leismann, Kristin , Schnalzer, Kathrin , Kennedy, Katharina

Living Labs for Sustainable Development aim to integrate users and actors for the successful generation of low-resource innovations in production-consumption systems.This paper investigates potentials of and measures towards the realization of a German Living Lab infrastructure to support actor-integrated sustainability research and innovations in Germany. Information was primarily derived from extensive dialog with experts from the fields of innovation, sustainable development and the Living Lab community (operators, users, etc.), which was facilitated through interviews and workshops. A status quo analysis revealed that, generally, the sustainability and Living Lab communities are hardly intertwined. Twelve Living Labs that explicitly consider sustainability aspects were identified. The application fields ""Living and Working"", ""Town, Region and Mobility"", and ""Retail and Gastronomy"" were identified as particularly suitable for investigation in Living Labs and highly relevant in terms of resource efficiency. Based on the analyses of drivers and barriers and SWOT, keystones for the development of a research infrastructure for user integrated development of sustainable products and services were formulated. Suggested strategies and measures include targeted funding programs for actor-integrated, socio-technical research based on a Living Lab network, a communication campaign, and programs to foster networking and the inclusion of SMEs.