Now showing 1 - 4 of 4
  • Publication
    Potentials of direct air capture and storage in a greenhouse gas-neutral European energy system
    ( 2023) ;
    Schneck, Niklas
    ;
    ;
    Männer, Wolfgang
    ;
    Negative emission technologies will likely be needed to achieve the European Commission's goal of greenhouse gas neutrality by 2050. This article investigates the potential of reducing greenhouse gases in the atmosphere via the DACCS pathway, i.e., to capture CO2 from the ambient air and permanently store it in geological formations. Since the capture of CO2 from ambient air is energy-intensive, this study particularly models the integration of DACCS plants into a greenhouse gas-neutral European energy system. The model results show that DACCS in Europe 2050 could cost between 160 €/tCO2 and 270 €/tCO2 with very conservative techno-economic assumptions and between 60 €/tCO2 and 140 €/tCO2 using more progressive parameters. Annually capturing 5% of Europe's 1990 emissions with a fully electric DACCS system would increase the capacities of onshore wind by 80–119 GWel and PV by 85–126 GWel. In the model results, Sweden, the Iberian Peninsula, Norway, and Finland incorporate the essential characteristics for a successful deployment of capturing and storing CO2 from ambient air: Sufficiently large geological CO2 storage capacities and relatively low-cost, vacant renewable power generation potentials. The low DACCS costs could minimize the cost of combating climate change and prevent the implementation of more expensive mitigation strategies. On the other hand, a DACCS-based climate protection strategy is fraught with the risks of CO2 storage leaks, acceptance problems for the additional required expansion of renewable energies, and premature depletion of global CO2 storage potentials.
  • Publication
    Wasserstoff im zukünftigen Energiesystem - eine systemische Analyse
    Im Rahmen des Teilprojektes 4 des DVGW-Forschungsvorhabens Roadmap Gas 2050 ist der verstärkte Einsatz von Wasserstoff in einem Wasserstoffszenario anhand einer systemanalytischen Bewertung untersucht worden; Details sind dem Deliverable 4.4 zu entnehmen. Hierfür wurde das deutsche Energiesystem in einem Verbund von Modellen für die Abschätzung der Energienachfragen in den Sektoren Mobilität, Gebäude und Industrie und für die Energiebereitstellung (Strom, Wärme, Kraftstoff und Gas) modelliert. Der Bilanzraum der Modellierung ist für die Nachfragemodelle Deutschland und für das Energieangebot EU und MENA mit Schwerpunkt Deutschland. Grundlage der Modellierung ist die Einhaltung der THG-Minderungsziele für die Sektoren entsprechend dem Klimaschutzgesetz von 2021. Ziel war es zum einen, die Bedingungen und Auswirkungen eines schnellen Hochlaufs der Nachfrage von Wasserstoff und weiteren EE-Gasen zu analysieren; zum anderen sollte auch die Bereitstellung der Gase beschrieben werden. Ein möglichst wahrscheinliches Szenario im Sinne einer Vorhersage zu entwerfen, war hingegen keine Zielsetzung des Vorhabens. Kriterien wie Handwerkermangel, Akzeptanz und betriebswirtschaftliche Überlegungen oder regulatorische Randbedingungen wurden vor diesem Hintergrund nicht betrachtet, was in der Realität zu einer langsameren Umsetzung führen kann. Umgekehrt könnte der russische Angriffskrieg auf die Ukraine und die damit verbundene Energiekrise zu administrativen Maßnahmen auf europäischer und nationaler Ebene führen, die zu einer Beschleunigung der Umsetzung führen.
  • Publication
    The role of hydrogen in a greenhouse gas-neutral energy supply system in Germany
    Hydrogen is widely considered to play a pivotal role in successfully transforming the German energy system, but the German government’s current “National Hydrogen Strategy” does not specify how hydrogen utilization, production, storage or distribution will be implemented. Addressing key uncertainties for the German energy system’s path to greenhouse gas-neutrality, this paper examines hydrogen in different scenarios. This analysis aims to support the concretization of the German hydrogen strategy. Applying a European energy supply model with strong interactions between the conversion sector and the hydrogen system, the analysis focuses on the requirements for geological hydrogen storages and their utilization over the course of a year, the positioning of electrolyzers within Germany, and the contributions of hydrogen transport networks to balancing supply and demand. Regarding seasonal hydrogen storages, the results show that hydrogen storage facilities in the range of 42 TWhH2 to 104 TWhH2 are beneficial to shift high electricity generation volumes from onshore wind in spring and fall to winter periods with lower renewable supply and increased electricity and heat demands. In 2050, the scenario results show electrolyzer capacities between 41 GWel and 75 GWel in Germany. Electrolyzer sites were found to follow the low-cost renewable energy potential and are concentrated on the North Sea and Baltic Sea coasts with their high wind yields. With respect to a hydrogen transport infrastructure, there were two robust findings: One, a domestic German hydrogen transport network connecting electrolytic hydrogen production sites in northern Germany with hydrogen demand hubs in western and southern Germany is economically efficient. Two, connecting Germany to a European hydrogen transport network with interconnection capacities between 18 GWH2 and 58 GWH2 is cost-efficient to meet Germany’s substantial hydrogen demand.
  • Publication
    Supply curves of electricity-based gaseous fuels in the MENA region
    The utilization of electricity-based fuels (e-fuels) is a potential strategy component for achieving greenhouse gas neutrality in the European Union (EU). As renewable electricity production sites in the EU itself might be scarce and relatively expensive, importing e-fuels from the Middle East and North Africa (MENA) could be a complementary and cost-efficient option. Using the energy system model Enertile, supply curves for hydrogen and synthetic methane in the MENA region are determined for the years 2030 and 2050 to evaluate this import option techno-economically. The model optimizes investments in renewable electricity production, e-fuel production chains, and local electricity transport infrastructures. Analyses of renewable electricity generation potentials show that the MENA region in particular has large low-cost solar power potentials. Optimization results in Enertile show for a weighted average cost of capital of 7% that substantial hydrogen production starts above 100 e/MWhH2 in 2030 and above 70 e/MWhH2 in 2050. Substantial synthetic methane production in the model results starts above 170 e/MWhCH4 in 2030 and above 120 e/MWhCH4 in 2050. The most important cost component in both fuel production routes is electricity. Taking into account transport cost surcharges, in Europe synthetic methane from MENA is available above 180 e/MWhCH4 in 2030 and above 130 e/MWhCH4 in 2050. Hydrogen exports from MENA to Europe cost above 120 e/MWhH2 in 2030 and above 90 e/MWhH2 in 2050. If exported to Europe, both e-fuels are more expensive to produce and transport in liquefied form than in gaseous form. A comparison of European hydrogen supply curves with hydrogen imports from MENA for 2050 reveals that imports can only be economically efficient if the two following conditions are met: Firstly, similar interest rates prevail in the EU and MENA; secondly, hydrogen transport costs converge at the cheap end of the range in the current literature. Apart from this, a shortage of land for renewable electricity generation in Europe may lead to hydrogen imports from MENA. This analysis is intended to assist in guiding European industrial and energy policy, planning import infrastructure needs, and providing an analytical framework for project developers in the MENA region.