Now showing 1 - 2 of 2
  • Publication
    Poly(lactic-co-glycolic acid) nanoparticles potentiate the protective effect of curcumin against bone loss in ovariectomized rats
    ( 2017)
    Ahn, J.
    ;
    Jeong, J.
    ;
    Lee, H.
    ;
    Sung, M.-J.
    ;
    Jung, C.H.
    ;
    Lee, H.
    ;
    Hur, J.
    ;
    Park, J.H.
    ;
    Jang, Y.J.
    ;
    Ha, T.Y.
    Osteoporosis increases fragility fractures and is a major health issue in the elderly. Curcumin, an active constituent of Curcuma longa, was reported to exert a beneficial effect on osteoporotic bone loss. However, poor aqueous solubility has limited its pharmacological efficacy. Although application of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as carriers for curcumin was demonstrated to improve the bioavailability of curcumin, the effect of curcumin-loaded PLGA (C-P) nanoparticles on bone health has not been investigated. To examine the therapeutic potential of C-P, we prepared C-P nanoparticles and confirmed curcumin was successfully encapsulated within the PLGA polymer. Ovariectomy (OVX)-induced bone loss was found to be ameliorated in rats fed with curcumin or C-P. The in vitro release study showed a typical biphasic pattern with an initial burst and following sustained release. Measurement of bone mineral density and observation of trabecular microarchitecture showed that C-P was more effective than free curcumin against osteoporosis. A qRT-PCR analysis demonstrated that C-P significantly improved bone remodeling. These results suggest that encapsulation with PLGA enhances the protective effect of curcumin against OVX-induced bone loss. This approach could be a promising strategy to improve the therapeutic index of phytochemicals against osteoporosis.
  • Publication
    Effectiveness of micro-current electrical stimulation for treating rheumatoid arthritis
    ( 2016)
    Kim, S.H.
    ;
    Lee, H.
    ;
    Hwang, D.H.
    ;
    Seo, D.H.
    ;
    Kim, H.S.
    ;
    Cho, S.
    Induction of micro-current in subject is known to be effective on the treatment of inflammatory disease. Thus, this study evaluated that the micro-current electrical treatment (MET) can reduce rheumatoid arthritis (RA), which is one of inflammatory disease, and tried to find optimized level of current for treatment. 55 male 11-week-old C57BL/6 mice were used and randomly allocated into five groups; normal group (N; n=11), the group of induced RA (C; n=11) and three groups of induced RA with MET (M) using different levels of current by 22 mA, 50 mA, and 400 mA (22M, 50M and 400M; n=11, respectively). MET was carried out for 1 hour each day. Both 3rd metatarsal (3rd MT) and tarsal (T) were scanned by in-vivo micro computed tomography (micro-CT) at 0week and after 3weeks in order to obtain structural parameters including BMD (Bone mineral density), BV (Bone volume) and Obj.N (Mean number of objects per slice). In M groups, all the measured parameters after 3 weeks were significantly higher than those of C group regardless of the current levels. However, there is no significant difference among the different levels of electrical current at 3week. These results indicated that the MET may be effective on the treatment of RA. However, we cannot assure the optimized level of current to treat RA tremendously.