Now showing 1 - 2 of 2
  • Publication
    A Service Oriented Architecture for the Digitalization and Automation of Distribution Grids
    ( 2022)
    Pau, Marco
    ;
    Mirz, Markus
    ;
    Dinkelbach, Jan
    ;
    McKeever, Padraic
    ;
    Ponci, Ferdinanda
    ;
    Modern distribution grids are complex systems that need advanced management for their secure and reliable operation. The Information and Communication Technology domain today offers unprecedented opportunities for the smart design of tools in support of grid operators. This paper presents a new philosophy for the digitalization and automation of distribution grids, based on a modular architecture of microservices implemented via container technology. This architecture enables a service-oriented deployment of the intelligence needed in the Distribution Management Systems, moving beyond the traditional view of monolithic software installations in the control rooms. The proposed architecture unlocks a broad set of possibilities, including cloud-based implementations, extension of legacy systems and fast integration of machine learning-based analytic tools. Moreover, it potentially opens a completely new market of turnkey services for distribution grid management, thus avoiding large upfront investments for grid operators. This paper presents the main concepts and benefits of the proposed philosophy, together with an example of field implementation based on open source components carried out in the context of the European project SOGNO.
  • Publication
    A Cloud-Based Platform for Service Restoration in Active Distribution Grids
    ( 2022)
    Haghgoo, Maliheh
    ;
    Dognini, Alberto
    ;
    In modern distribution grids, the access to the growing amount of data from various sources, the execution of complex algorithms on-demand, and the control of sparse actuators require on-demand scalability to support fluctuating workloads. Cloud computing technologies represent a viable solution for these requirements. To ensure that data can be exchanged and shared efficiently, as well as the full achievement of the cloud computing benefits to support the advanced analytic and mining required in smart grids, applications can be empowered with semantic information integration. This article adopts the semantic web into a cloud-based platform to analyze power distribution grids data and apply a service restoration application to re-energize loads after an electrical fault. The exemplary implementation of the demo is powered by FIWARE, which is based on open-source and customizable building blocks for future internet applications and services, and the SARGON ontology for the energy domain. The tests are deployed by integrating the semantic information, based on the IEC 61850 data model, in the cloud-based service restoration application and interfacing the field devices of the distribution grids. The platform performances, measured as network latency and computation time, ensure the feasibility of the proposed solution, constituting a reference for the next deployments of smart energy platforms.