Now showing 1 - 2 of 2
  • Publication
    Comparative Assessment of Shifted Frequency Modeling in Transient Stability Analysis using the Open Source Simulator DPsim
    ( 2022)
    Nakti, Ghassen
    ;
    Dinkelbach, Jan
    ;
    Mirz, Markus
    ;
    Modern power systems introduce new dynamics, which may require the appropriate selection of the modeling method for each type of dynamic simulation. In this paper, electromagnetic transient (EMT), Root Mean Square (RMS), and Shifted Frequency Analysis (SFA) modeling are compared in the scope of the dynamic simulation of transient stability analysis. The comparison is carried out by analyzing the accuracy of the simulation results as a function of the simulation step size. The evaluation is conducted for classic and low inertia systems for the accuracy of rotor angle transients and the critical clearing time, being the variables of interest in transient stability analysis. The real-time open source simulator DPsim is employed. The main advantage presented by DPsim, is the possibility to run the same simulation scenario with the same solver, but in three different modeling domains. This powerful feature enables a systematic comparison between the modeling methods. With respect to transient stability analysis, the results of the comparative analysis support the usage of SFA, both for classic and low inertia systems. SFA incorporate more dynamics than RMS simulation into the models, while at the same time allowing larger step sizes than EMT simulation.
  • Publication
    A Service Oriented Architecture for the Digitalization and Automation of Distribution Grids
    ( 2022)
    Pau, Marco
    ;
    Mirz, Markus
    ;
    Dinkelbach, Jan
    ;
    McKeever, Padraic
    ;
    Ponci, Ferdinanda
    ;
    Modern distribution grids are complex systems that need advanced management for their secure and reliable operation. The Information and Communication Technology domain today offers unprecedented opportunities for the smart design of tools in support of grid operators. This paper presents a new philosophy for the digitalization and automation of distribution grids, based on a modular architecture of microservices implemented via container technology. This architecture enables a service-oriented deployment of the intelligence needed in the Distribution Management Systems, moving beyond the traditional view of monolithic software installations in the control rooms. The proposed architecture unlocks a broad set of possibilities, including cloud-based implementations, extension of legacy systems and fast integration of machine learning-based analytic tools. Moreover, it potentially opens a completely new market of turnkey services for distribution grid management, thus avoiding large upfront investments for grid operators. This paper presents the main concepts and benefits of the proposed philosophy, together with an example of field implementation based on open source components carried out in the context of the European project SOGNO.