Now showing 1 - 8 of 8
  • Publication
    The formation and metabolism of xenobiotic glutathione-conjugates in the needles of spruce trees
    ( 1992)
    Schröder, P.
    ;
    Nathaus, F.
    ;
    Lamoureux, G.L.
    ;
    Rusness, D.G.
  • Publication
    The induction of glutathione S-transferase and C-S lyase in the needles of spruce trees
    ( 1992)
    Schröder, P.
    ;
    Nathaus, F.
    ;
    Lamoureux, G.L.
    ;
    Rusness, D.G.
  • Publication
  • Publication
    Sauerstoffzufuhr zu den Wurzeln von Pflanzen aus Feuchtgebieten
    ( 1990)
    Meischner, V.
    ;
    Schröder, P.
    Aquatic macrophytes or plants living in wet soils have to cope with oxygen shortage around their roots and rhizomes. These organs are not able to take up oxygen from the surrounding medium and have to rely internal oxygen supply through aerenchymatous spaces in the plants. The present study tries to elucidate the mechanism of oxygen supply to the roots of Acorus calamus, Iris pseudacorus, and Phragmites communis. Release of oxygen out of the roots could be of special importance because the species could contribute in the aeration of sewage sludges. Gas escape from the plants roots was found to be species specific: in Acorus and Phragmites rates of 1-2 ml of air h high -1 were calculated, whereas Iris was found to emit not more than 0.2 ml air h high -1 per plant. The reasons for the differences in diffusion are discussed.
  • Publication
    Localization of thermo-osmotically active partitions in young leaves of Nuphar lutea
    ( 1986)
    Grosse, W.
    ;
    Schröder, P.
    ;
    Wörmann, D.
    The submerged roots and rhizomes of the aquatic vascular macrophyte Nuphar lutea (L.) Sm. are aerated, at least in part, by pressurized ventilation. Depending on temperature differences of up to 5 K between the inside of young, just-emerged leaves and the surrounding air, pressure differences of 79 to 100 Pa higher than atmospheric are detectable inside the lacunuous spongy parenchyma of the leaf blades. The pressurization is a consequence of structural features of leaf tissues separating the air filled spaces of the spongy parenchyma from the atmosphere. These tissues are acting as thermo-osmotic partitions. Whereas the dimensions of the stomatal openings (about 5.6 x 2.4 mym) and of the intercellular spaces of the palisade parenchyma (diameters about 15 mym) are too large, those of the monolayers of cells separating the palisade and the spongy parenchyma (diameters: 0.7-1.2 mym) are small enough to impede free gaseous diffusion. This inner non-homogeneous partitioning gives rise to t he so-called Knudsen diffusion, a physical phenomenon leading to pressurization of the warmer air inside the spongy parenchyma. The rising pressure difference is strong enough to establish an air flow through the aerenchyma of the whole plant and out of the most porous older leaves in which a temperature induced pressurization is never detectable. (IFU)
  • Publication
    Pflanzenleben unter anaeroben Umweltbediungen, die physikalischen Grundlagen und anatomischen Voraussetzungen.
    ( 1986)
    Schröder, P.
    ;
    Grosse, W.
    Plants are adapted to an oxygen supply of their rhizoms and roots buried in the anaerobic sediments of lakes or in the soil of wetland plains. A spongy tissue in the roots of alder-trees and the aerenyma formation in the aquatic vascular macrophytes facilitate the air movement throughout these plants and make it possible for O2 to travel long distances from the atmosphere to the submerged parts of the plant. The higher water solubility of CO2 leads to a pressure decrease in the intercellular system of the dissimilating tissues. The created pressure difference initiates an air stream throughout the plant competing with the O2 supply by diffusion. (IFU)
  • Publication
    Aeration of the roots and chloroplast-free tissues of trees.
    ( 1985)
    Schröder, P.
    ;
    Grosse, W.
    Im Gegensatz zu anderen europaeischen Laubbaeumen, die aufgrund ihrer Zugehoerigkeit zu unterschiedlichen Holztypen ausgewaehlt worden waren, ist die Schwarzerle (Alnus glutinosa Gaertn.) gut angepasst an ein Leben in feuchten Flussauen oder anderen Biotypen, die zeitweise ueberflutet werden. Damit das Wurzelsystem bei laengeranhaltender Ueberflutung ausreichend mit O2 versorgt wird, kann die Diffusion von Luft zu den Wurzeln bis auf das achtfache gesteigert werden, denn Ueberflutung induziert die Hypertrophierung der Lenticellen auch oberhalb des Wasserspiegels und lockert damit das Abschlussgewebe auf. Unter den normalen Lebensbedingungen des feuchten Bruchwaldes belueften die Erlen ihre chloroplastenfreien Gewebe im Stamm und ihr Wurzelsystem, neben der normalen Gasdiffusion, zusaetzlich durch einen vielfach hoeheren Gastransport. Dieser Gastransport ist vom Stamm zu den Wurzeln gerichtet. Er wird durch einen thermoosmotischen Druckaufbau innerhalb des ausgedehnten Interzellularsyst ems des Stammes angetrieben, da zwischen Stamm und umgebender Luft ein fuer diesen rein physikalischen Effekt notwendiger Temperaturgradient von bis zu 3,6 K aufgebaut wird. Erzeugt und aufrecht erhalten wird dieser Temperaturgradient durch die Absorption der Lichtenergie durch die braunen Pigmente der Borke. Die hier beschriebenen Phaenomene sind rein physikalischer Natur und vollkommen losgeloest von physiologischen Vorgaengen in der Pflanze. (IFU)