Now showing 1 - 5 of 5
  • Publication
    Wafer Level Capping Technology for Vacuum Packaging of Microbolometers
    ( 2023-08-03) ; ; ;
    Meier, Dirk
    ;
    Malik, Nishant
    ;
    ; ;
    Roy, Avisek
    ;
    Nguyen, Hoang-Vu
    ;
    Nguyen, Thanh-Phuc
    This paper presents novel technology developments for vacuum wafer level packaging of microbolometer arrays for thermal infrared sensors targeting applications in automotive, safety, and security/surveillance. The concept is based on fabrication of large cap structures on temporary carrier wafers and their subsequent transfer bonding to device wafers. The objective of the presented work was to develop and test wafer level vacuum packaging for MEMS microbolometer arrays (MBA) fabricated on read out integrated circuit (ROIC) wafers. For that, related MBA layouts integrating diverse Pirani vacuum test structures were fabricated on 200-mm silicon wafers. With intent of hermeticity, all wafer bonding steps were done by AuSn soldering using seal rings, which were deposited by electroplating. The relevant process flows with alternative process options as well as the obtained results of the capping approaches are presented and discussed extensively in this article. For characterization of the sealing results, Pirani test structures were utilized. First, their resistance vs. pressure behavior was determined under controlled reference vacuum. The measured resistance values of identical structures after capping were then compared with the reference data to estimate the residual vacuum inside the cavity of the bonded cap structures.
  • Publication
    A novel hermetic encapsulation approach for the protection of electronics in harsh environments
    Technologies and building blocks for the realization of reliable electronic systems for the use in harsh environments are attracting increasing intention. Harsh environments are for instance high temperature, pressure, mechanical stress and/or submerge into corrosive liquids, or the combination thereof. In the first place electronic components like integrated circuits or passive components which constitute the electronic system need to be operational under harsh conditions. On system level also the interconnections and package materials need to withstand the loading conditions. Printed circuit board embedding technology is a highly promising approach to realize this kind of electronic systems. Embedded semiconductors and passive components are mechanically protected from the environmental stresses by the epoxy/glass fibre compound into which they are encapsulated. Furthermore, novel types of high temperature laminate materials are commercially available since a few years. In an electroless plating process a fully hermetic metallic encapsulation can be added to the modules. This encapsulation acts as a protective barrier when they are immersed into corrosive liquids or gases. The external electrical connections out of the package are realized by ceramics with metallic feed throughs. They are assembled onto the modules (prior to the metallic encapsulation) using sinter-lamination-technology, i.e. the simultaneous build-up lamination and a sintering process. Two application demonstrators were realized in order to show the general viability of the encapsulation process. All used materials are commercially available. Industrial process equipment was used throughout the manufacturing. Subsequent reliability tests provide evidence for the general robustness and functionality of the modules under harsh environmental conditions. This work was part of the Fraunhofer lighthouse project “eHarsh” which was funded by the Fraunhofer Society.
  • Publication
    Sensor Systems for Extremely Harsh Environments
    Sensors are key elements for the detection of environmental properties and are indispensable in industrial applications for process monitoring and intelligent control of processes. While highly integrated sensor systems are already state -of-theart in many everyday areas, the situation in an industrial environment is significantly different. The use of sensor systems is often not possible because the extreme environmental conditions of industrial processes such as high operating temperatures or strong mechanical loads do not allow the reliable operation of sensitive electronic components. As part of the Fraunhofer Lighthouse project eHarsh, eight institutes have bundled their competencies and created a technology platform as a basis for the development of sensor systems for extremely harsh environments.
  • Publication
    Smart sensor systems for extremely harsh environments
    Sensors systems are key elements for capturing environmental properties and are increasingly important in industry 4.0 for the intelligent control of processes. However, under harsh operating conditions like high temperatures, high mechanic load or aggressive environments, standard electronics cannot be used. Eight Fraunhofer institutes have therefore bundled their competencies in sensors, microelectronics, assembly, board design, laser applications and reliability analysis to establish a technology platform for sensor systems working under extreme conditions.
  • Publication
    HOT-300 - a multidisciplinary technology approach targeting microelectronic systems at 300 °C operating temperature
    Several applications in the fields of industrial sensors and power electronics are creating a demand for high operating temperature of 300 °C or even higher. Due to the increased temperature range new potential defect risks and material interactions have to be considered. As a consequence, innovation in semiconductor, devices and packaging technologies has to be accompanied by dedicated research of the reliability properties. Therefore various investigations on realizing high temperature capable electronic systems have shown that a multidisciplinary approach is necessary to achieve highly reliable solutions. In the course of the multi-institute Fraunhofer internal research program HOT-300 several aspects of microelectronic systems running up to 300 °C have been investigated like SOI-CMOS technology and circuits, silicon capacitor devices, a capacitive micromachined ultrasonic transducer (CMUT), ceramic substrates and different packaging and assembly techniques. A ceramic molded package has been developed. Die attach on different leadframe alloys were investigated using silver sintering and transient liquid phase bonding (TLPB). Copper and gold wire bonding was studied and used to connect the chips with the package terminals. Investigations in flip chip technology were performed using Au/Sn and Cu/Sn solder bumps for transient liquid phase bonding. High operating temperatures result in new temperature driven mechanisms of degradation and material interactions. It is quite possible that the thermomechanical reliability is a limiting factor for the technology to be developed. Therefore investigations on material diagnostics, reliability testing and modeling have been included in the project, complementing the technology developments.