Now showing 1 - 3 of 3
  • Publication
    Smart sensor systems for extremely harsh environments
    Sensors systems are key elements for capturing environmental properties and are increasingly important in industry 4.0 for the intelligent control of processes. However, under harsh operating conditions like high temperatures, high mechanic load or aggressive environments, standard electronics cannot be used. Eight Fraunhofer institutes have therefore bundled their competencies in sensors, microelectronics, assembly, board design, laser applications and reliability analysis to establish a technology platform for sensor systems working under extreme conditions.
  • Publication
    A high temperature SOI-CMOS chipset focusing sensor electronics for operating temperatures up to 300 °C
    Sensors are key elements for capturing environmental properties and are increasingly important in the industry for the intelligent control of industrial processes. While in many everyday objects highly integrated sensor systems are already state of the art, the situation in an industrial environment is clearly different. Frequently the use of sensor systems is impossible, because the extreme ambient conditions of industrial processes like high operating temperatures or strong mechanical load do not allow a reliable operation of sensitive electronic components. Fraunhofer is running the Lighthouse Project 'eHarsh' to overcome this hurdle. In the course of the project an integrated sensor readout electronic has been realized based on a set of three chips. A dedicated sensor frontend provides the analog sensor interface for resistive sensors typically arranged in a Wheatstone configuration. Furthermore, the chipset includes a 32-bit microcontroller for signal conditioning and sensor control. Finally, it comprises an interface chip including a bus transceiver and voltage regulators. The chipset has been realized in a high temperature 0.35 micron SOI-CMOS technology focusing operating temperatures up to 300 °C. The chipset is assembled on a multilayer ceramic LTCC-board using flip chip technology. The ceramic board consists of 4 layers with a total thickness of approx. 0.9 mm. The internal wiring is based on silver paste while external contacts were alternatively manufactured in silver (sintering/soldering) or in gold-alloys (wire bonding). As interconnection technology, silver sintering has been applied. It has already been shown that a significant increase in lifetime can be reached by using silver sintering for die attach applications. Using silver sintering for flip chip technology is a new and challenging approach. By adjusting the process parameter geared to the chipset design and the design of the ceramic board high quality flip chip interconnects can be generated.
  • Publication
    HOT-300 - a multidisciplinary technology approach targeting microelectronic systems at 300 °C operating temperature
    Several applications in the fields of industrial sensors and power electronics are creating a demand for high operating temperature of 300 °C or even higher. Due to the increased temperature range new potential defect risks and material interactions have to be considered. As a consequence, innovation in semiconductor, devices and packaging technologies has to be accompanied by dedicated research of the reliability properties. Therefore various investigations on realizing high temperature capable electronic systems have shown that a multidisciplinary approach is necessary to achieve highly reliable solutions. In the course of the multi-institute Fraunhofer internal research program HOT-300 several aspects of microelectronic systems running up to 300 °C have been investigated like SOI-CMOS technology and circuits, silicon capacitor devices, a capacitive micromachined ultrasonic transducer (CMUT), ceramic substrates and different packaging and assembly techniques. A ceramic molded package has been developed. Die attach on different leadframe alloys were investigated using silver sintering and transient liquid phase bonding (TLPB). Copper and gold wire bonding was studied and used to connect the chips with the package terminals. Investigations in flip chip technology were performed using Au/Sn and Cu/Sn solder bumps for transient liquid phase bonding. High operating temperatures result in new temperature driven mechanisms of degradation and material interactions. It is quite possible that the thermomechanical reliability is a limiting factor for the technology to be developed. Therefore investigations on material diagnostics, reliability testing and modeling have been included in the project, complementing the technology developments.