Now showing 1 - 5 of 5
  • Publication
    Sensor Systems for Extremely Harsh Environments
    Sensors are key elements for capturing environmental properties and are today indispensable in the industry for monitoring and control of industrial processes. Many applications are demanding for highly integrated intelligent sensors to meet the requirements on safety, clean and energy efficient operation or to gain process information in the context of industry 4.0. While in many everyday objects highly integrated sensor systems are already state of the art, the situation in an industrial environment is clearly different. Frequently the use of sensor systems is impossible, due to the fact that the extreme ambient conditions of industrial processes like high operating temperatures or strong mechanical loads do not allow a reliable operation of sensitive electronic components. Eight Fraunhofer Institutes have bundled their competencies and have run the Fraunhofer Lighthouse Project ‘eHarsh’ to overcome this situation. The project goal was to realize sensor systems for extremely harsh environments, whereby sensor systems are not only pure sensor elements, rather containing one or multiple sensor elements and integrated readout electronics. Various technologies which are necessary for the realization of such sensor systems have been identified, developed and finally bundled in a technology platform. These technologies are e. g. MEMS and ceramic based sensors, SOI-CMOS based integrated electronics, board assembly and laser based joining technologies. All these developments have been accompanied by comprehensive tests, material characterization and reliability simulations. Based on the platform a pressure sensor for turbine applications has been realized to prove the performance of the eHarsh technology platform.
  • Publication
    A novel hermetic encapsulation approach for the protection of electronics in harsh environments
    Technologies and building blocks for the realization of reliable electronic systems for the use in harsh environments are attracting increasing intention. Harsh environments are for instance high temperature, pressure, mechanical stress and/or submerge into corrosive liquids, or the combination thereof. In the first place electronic components like integrated circuits or passive components which constitute the electronic system need to be operational under harsh conditions. On system level also the interconnections and package materials need to withstand the loading conditions. Printed circuit board embedding technology is a highly promising approach to realize this kind of electronic systems. Embedded semiconductors and passive components are mechanically protected from the environmental stresses by the epoxy/glass fibre compound into which they are encapsulated. Furthermore, novel types of high temperature laminate materials are commercially available since a few years. In an electroless plating process a fully hermetic metallic encapsulation can be added to the modules. This encapsulation acts as a protective barrier when they are immersed into corrosive liquids or gases. The external electrical connections out of the package are realized by ceramics with metallic feed throughs. They are assembled onto the modules (prior to the metallic encapsulation) using sinter-lamination-technology, i.e. the simultaneous build-up lamination and a sintering process. Two application demonstrators were realized in order to show the general viability of the encapsulation process. All used materials are commercially available. Industrial process equipment was used throughout the manufacturing. Subsequent reliability tests provide evidence for the general robustness and functionality of the modules under harsh environmental conditions. This work was part of the Fraunhofer lighthouse project “eHarsh” which was funded by the Fraunhofer Society.
  • Publication
    Sensor Systems for Extremely Harsh Environments
    Sensors are key elements for capturing environmental properties and are today indispensable in the industry for monitoring and control of industrial processes. Many applications are demanding for highly integrated intelligent sensors to meet the requirements on safety, clean, and energy-efficient operation, or to gain process information in the context of industry 4.0. While in many everyday objects highly integrated sensor systems are already state of the art, the situation in an industrial environment is clearly different. Frequently, the use of sensor systems is impossible due to the fact that the extreme ambient conditions of industrial processes like high operating temperatures or strong mechanical loads do not allow a reliable operation of sensitive electronic components. Eight Fraunhofer Institutes have bundled their competencies and have run the Fraunhofer Lighthouse Project “eHarsh” to overcome this situation. The project goal was to realize sensor systems for extremely harsh environments, whereby sensor systems are more than pure sensors, rather these are containing one or multiple sensing elements and integrated readout electronics. Various technologies, which are necessary for the realization of such sensor systems, have been identified, developed, and finally bundled in a technology platform. These technologies are, e.g., MEMS and ceramic-based sensors, SOI-CMOS-based integrated electronics, board assembly and laser-based joining technologies. All these developments have been accompanied by comprehensive tests, material characterization, and reliability simulations. Based on the platform, a pressure sensor for turbine applications has been realized to prove the performance of the eHarsh technology platform.
  • Publication
    Sensor Systems for Extremely Harsh Environments
    Sensors are key elements for the detection of environmental properties and are indispensable in industrial applications for process monitoring and intelligent control of processes. While highly integrated sensor systems are already state -of-theart in many everyday areas, the situation in an industrial environment is significantly different. The use of sensor systems is often not possible because the extreme environmental conditions of industrial processes such as high operating temperatures or strong mechanical loads do not allow the reliable operation of sensitive electronic components. As part of the Fraunhofer Lighthouse project eHarsh, eight institutes have bundled their competencies and created a technology platform as a basis for the development of sensor systems for extremely harsh environments.
  • Publication
    A high temperature SOI-CMOS chipset focusing sensor electronics for operating temperatures up to 300 °C
    Sensors are key elements for capturing environmental properties and are increasingly important in the industry for the intelligent control of industrial processes. While in many everyday objects highly integrated sensor systems are already state of the art, the situation in an industrial environment is clearly different. Frequently the use of sensor systems is impossible, because the extreme ambient conditions of industrial processes like high operating temperatures or strong mechanical load do not allow a reliable operation of sensitive electronic components. Fraunhofer is running the Lighthouse Project 'eHarsh' to overcome this hurdle. In the course of the project an integrated sensor readout electronic has been realized based on a set of three chips. A dedicated sensor frontend provides the analog sensor interface for resistive sensors typically arranged in a Wheatstone configuration. Furthermore, the chipset includes a 32-bit microcontroller for signal conditioning and sensor control. Finally, it comprises an interface chip including a bus transceiver and voltage regulators. The chipset has been realized in a high temperature 0.35 micron SOI-CMOS technology focusing operating temperatures up to 300 °C. The chipset is assembled on a multilayer ceramic LTCC-board using flip chip technology. The ceramic board consists of 4 layers with a total thickness of approx. 0.9 mm. The internal wiring is based on silver paste while external contacts were alternatively manufactured in silver (sintering/soldering) or in gold-alloys (wire bonding). As interconnection technology, silver sintering has been applied. It has already been shown that a significant increase in lifetime can be reached by using silver sintering for die attach applications. Using silver sintering for flip chip technology is a new and challenging approach. By adjusting the process parameter geared to the chipset design and the design of the ceramic board high quality flip chip interconnects can be generated.