Now showing 1 - 1 of 1
  • Publication
    Experimental and simulative study of warpage behavior for fan-out wafer-level packaging
    ( 2022) ; ;
    Stegmaier, Andreas
    ;
    Walter, Hans
    ;
    ;
    Schneider-Ramelow, M.
    Controlling warpage effects in fan-outwafer-level packaging (FO-WLP) is of key importance for realizing reliable and cost-efficient system in packages (SiPs). However, warpage effects can occur during the manufacturing process, caused by a combination of different processing temperatures, different materials, and the changing properties of the materials (e.g. polymerization and related cure shrinkage). One approach to controlling warpage could be realized by assessing a numerical simulation workflow of the FO-WLP process chain, in which the relevant material properties and geometry are used as input. Since there are many different steps included in the FO-WLP process, accompanied by complex material behavior, this workflow is not straight-forward. In the present paper, the first FO-WLP processing steps are investigated in detail by performing extensive thermo-mechanical material characterization, temperature-dependent warpage measurements, and numerical simulations. The investigation focuses on two epoxy mold compound (EMC) materials with completely different physical properties. The warpage measurements of bi-material (EMC and silicon) samples reveal an irreversible effect after passing certain processing temperatures, which are significant for final warpage at room temperature. A new approach to measuring the coefficient of thermal expansion (CTE) is discussed, using a temperature profile based on the temperature in the process, instead of the three identical temperature ramps suggested by the typical standards. This new approach makes it possible to determine possible shrinkage effects. Within the simulation model, the hysteresis effect observed in the experiment is taken into account by adding a shrinkage strain as well as changing the CTE values during the process. A very good agreement between the experiment and simulation is achieved, which is shown for several demonstrators with different epoxy mold compound materials and thicknesses.