Now showing 1 - 1 of 1
  • Publication
    Intermetallic growth and thermal impedance at the In32.5Bi16.5Sn/Cu interface
    ( 2023)
    Chen, Chun-Hao
    ;
    Yang, Chunglin
    ;
    Chuang, Tung Han
    Present developing trends in the miniaturization and power escalation on electronic components have driven research interest in thermal interface materials (TIMs) to solve the fundamental issue of heat dissipation. Among the various TIMs, the In32.5Bi16.5Sn low melting alloy (LMA) has drawn much attention owing to its low melting point and great bondability, which could mitigate the warpage issue and provide very low thermal interface resistance. In this study, the Cu/In32.5Bi16.5Sn/Cu structure was used to simulate the practical conditions of the application of TIM in joining the substrate and heat sink. The thermal properties before and after an aging test at 80 °C were measured with a thermal tester, and the growth kinetics of the intermetallic compound (IMC) at the In32.5Bi16.5Sn/Cu interface were investigated. Without fast dissolution of Cu into the In32.5Bi16.5Sn alloy, the growth kinetics of the IMC at the interface were found to be diffusion-controlled at the temperature studied. It was found that the main change in the Cu/In32.5Bi16.5Sn/Cu system after the aging test was the thickening of the IMC, and the interface was free of cracks. As the aging time increased, the thermal impedance increased to twice that of the initial value, showing parabolic degradation, which is relevant to the growth kinetics of the IMC at the interface. Implications for the degradation of the thermal performance and further research are also discussed.