Now showing 1 - 4 of 4
  • Publication
    FORTRESS: FORtified Tamper-Resistant Envelope with Embedded Security Sensor
    ( 2021)
    Garb, Kathrin
    ;
    Obermaier, Johannes
    ;
    Ferres, Elischa
    ;
    Künig, Martin
    Protecting security modules from attacks on the hardware level presents a very challenging endeavor since the attacker can manipulate the device directly through physical access. To address this issue, different physical security enclosures have been developed with the goal to cover entire hardware modules and, hence, protect them from external manipulation. Novel concepts are battery-less and based on Physical Unclonable Functions (PUFs), aiming at overcoming the most severe drawbacks of past devices; the need for active monitoring and, thus, limited battery life-time. Although some progress has already been made for certain aspects of PUF-based enclosures, the combination and integration of all required components and the creation of a corresponding architecture for Hardware Security Modules (HSMs) is still an open issue. In this paper, we present FORTRESS, a PUF-based HSM that integrates the tamper-sensitive capacitive PUF-based envelope and its embedded security sensor IC into a secure architecture. Our concept proposes a secure life cycle concept including shipment aspects, a full key generation scheme with re-enrollment capabilities, and our the next generation Embedded Key Management System. With FORTRESS, we take the next step towards the productive operation of PUF-based HSMs.
  • Publication
    A Security Architecture for RISC-V based IoT Devices
    New IoT applications are demanding for more and more performance in embedded devices while their deployment and operation poses strict power constraints. We present the security concept for a customizable Internet of Things (IoT) platform based on the RISC-V ISA and developed by several Fraunhofer Institutes. It integrates a range of peripherals with a scalable computing subsystem as a three dimensional Systemin- Package (3D-SiP). The security features aim for a medium security level and target the requirements of the IoT market. Our security architecture extends given implementations to enable secure deployment, operation, and update. Core security features are secure boot, an authenticated watchdog timer, and key management. The Universal Sensor Platform (USeP) SoC is developed for GLOBALFOUNDRIES' 22FDX technology and aims to provide a platform for Small and Medium-sized Enterprises (SMEs) that typically do not have access to advanced microelectronics and integration know-how, and are therefore limited to Commercial Off-The-Shelf (COTS) products.
  • Publication
    Capacitive multi-channel security sensor IC for tamper-resistant enclosures
    ( 2018)
    Ferres, Elischa
    ;
    Immler, Vincent
    ;
    ; ;
    Physical attacks are a serious threat for embedded devices. Since these attacks are based on physical interaction, sensing technology is a key aspect in detecting them. For highest security levels devices in need of protection are placed into tamper-resistant enclosures. In this paper we present a capacitive multi-channel security sensor IC in a 350 nm CMOS technology. This IC measures more than 128 capacitive sensor nodes of such an enclosure with an SNR of 94.6 dB across a 16×16 electrode matrix in just 19.7 ms. The theoretical sensitivity is 35 aF which is practically limited by noise to 460 aF. While this is similar to capacitive touch technology, it outperforms available solutions of this domain with respect to precision and speed.
  • Publication
    Safety & security testing of cooperative automotive systems
    ( 2018)
    Seydel, Dominique
    ;
    ;
    Pöhn, Daniela
    ;
    ;
    Cooperative behavior of automated traffic participants is one next step towards the goals of reducing the number of traffic fatalities and optimizing traffic flow. The notification of a traffic participant's intentions and coordination of driving strategies increase the reaction time for safety functions and allow a foresighted maneuver planning. When developing cooperative applications, a higher design complexity has to be handled, as components are distributed over heterogeneous systems that interact with a varying timing behavior and less data confidence. In this paper, we present a solution for the development, simulation and validation of cooperative automotive systems together with an exemplary development flow for safety and security testing.