Now showing 1 - 8 of 8
  • Publication
    Activation Anomaly Analysis
    Inspired by recent advances in coverage-guided analysis of neural networks, we propose a novel anomaly detection method. We show that the hidden activation values contain information useful to distinguish between normal and anomalous samples. Our approach combines three neural networks in a purely data-driven end-to-end model. Based on the activation values in the target network, the alarm network decides if the given sample is normal. Thanks to the anomaly network, our method even works in semi-supervised settings. Strong anomaly detection results are achieved on common data sets surpassing current baseline methods. Our semi-supervised anomaly detection method allows to inspect large amounts of data for anomalies across various applications.
  • Publication
    Deutsche Normungsroadmap Künstliche Intelligenz
    Die deutsche Normungsroadmap Künstliche Intelligenz (KI) verfolgt das Ziel, für die Normung Handlungsempfehlungen rund um KI zu geben, denn sie gilt in Deutschland und Europa in fast allen Branchen als eine der Schlüsseltechnologien für künftige Wettbewerbsfähigkeit. Die EU geht davon aus, dass die Wirtschaft in den kommenden Jahren mit Hilfe von KI stark wachsen wird. Umso wichtiger sind die Empfehlungen der Normungsroadmap, die die deutsche Wirtschaft und Wissenschaft im internationalen KI-Wettbewerb stärken, innovationsfreundliche Bedingungen schaffen und Vertrauen in die Technologie aufbauen sollen.
  • Publication
    Optimizing Information Loss Towards Robust Neural Networks
    Neural Networks (NNs) are vulnerable to adversarial examples. Such inputs differ only slightly from their benign counterparts yet provoke misclassifications of the attacked NNs. The perturbations required to craft the examples are often negligible and even human-imperceptible. To protect deep learning-based systems from such attacks, several countermeasures have been proposed with adversarial training still being considered the most effective. Here, NNs are iteratively retrained using adversarial examples forming a computationally expensive and time consuming process, which often leads to a performance decrease. To overcome the downsides of adversarial training while still providing a high level of security, we present a new training approach we call entropic retraining. Based on an information-theoretic-inspired analysis, we investigate the effects of adversarial training and achieve a robustness increase without laboriously generating adversarial examples. With our prototype implementation we validate and show the effectiveness of our approach for various NN architectures and data sets. We empirically show that entropic retraining leads to a significant increase in NNs' security and robustness while only relying on the given original data. With our prototype implementation we validate and show the effectiveness of our approach for various NN architectures and data sets.
  • Publication
    DLA: Dense-Layer-Analysis for Adversarial Example Detection
    ( 2020) ;
    Kao, Ching-yu
    ;
    Chen, Peng
    ;
    Lei, Xiao
    ;
    In recent years Deep Neural Networks (DNNs) have achieved remarkable results and even showed superhuman capabilities in a broad range of domains. This led people to trust in DNN classifications even in security-sensitive environments like autonomous driving. Despite their impressive achievements, DNNs are known to be vulnerable to adversarial examples. Such inputs contain small perturbations to intentionally fool the attacked model. In this paper, we present a novel end-to-end framework to detect such attacks without influencing the target model's performance. Inspired by research in neuron-coverage guided testing we show that dense layers of DNNs carry security-sensitive information. With a secondary DNN we analyze the activation patterns of the dense layers during classification run-time, which enables effective and real-time detection of adversarial examples. Our prototype implementation successfully detects adversarial examples in image, natural language, and audio processing. Thereby, we cover a variety of target DNN architectures. In addition to effectively defending against state-of-the-art attacks, our approach generalizes between different sets of adversarial examples. Our experiments indicate that we are able to detect future, yet unknown, attacks. Finally, during white-box adaptive attacks, we show our method cannot be easily bypassed.
  • Publication
    Context by Proxy: Identifying Contextual Anomalies Using an Output Proxy
    ( 2019)
    Schulze, Jan-Philipp
    ;
    Mrowca, Artur
    ;
    Ren, Elizabeth
    ;
    Loeliger, Hans-Andrea
    ;
    Contextual anomalies arise only under special internal or external stimuli in a system, often making it infeasible to detect them by a rule-based approach. Labelling the underlying problem sources is hard because complex, time-dependent relationships between the inputs arise. We propose a novel unsupervised approach that combines tools from deep learning and signal processing, working in a purely data-driven way. Many systems show a desirable target behaviour which can be used as a proxy quantity removing the need to manually label data. The methodology was evaluated on real-life test car traces in the form of multivariate state message sequences. We successfully identified contextual anomalies during the cars' timeout process along with possible explanations. Novel input encodings allow us to summarise the entire system context including the timing such that more information is available during the decision process.
  • Publication
    Side-Channel Aware Fuzzing
    Software testing is becoming a critical part of the development cycle of embedded devices, enabling vulnerability detection. A well-studied approach of software testing is fuzz-testing (fuzzing), during which mutated input is sent to an input-processing software while its behavior is monitored. The goal is to identify faulty states in the program, triggered by malformed inputs. Even though this technique is widely performed, fuzzing cannot be applied to embedded devices to its full extent. Due to the lack of adequately powerful I/O capabilities or an operating system the feedback needed for fuzzing cannot be acquired. In this paper we present and evaluate a new approach to extract feedback for fuzzing on embedded devices using information the power consumption leaks. Side-channel aware fuzzing is a threefold process that is initiated by sending an input to a target device and measuring its power consumption. First, we extract features from the power traces of the target device using machine learning algorithms. Subsequently, we use the features to reconstruct the code structure of the analyzed firmware. In the final step we calculate a score for the input, which is proportional to the code coverage. We carry out our proof of concept by fuzzing synthetic software and a light-weight AES implementation running on an ARM Cortex-M4 microcontroller. Our results show that the power side-channel carries information relevant for fuzzing.
  • Publication
    High-performance unsupervised anomaly detection for cyber-physical system networks
    While the ever-increasing connectivity of cyber-physical systems enlarges their attack surface, existing anomaly detection frameworks often do not incorporate the rising heterogeneity of involved systems. Existing frameworks focus on a single fieldbus protocol or require more detailed knowledge of the cyber-physical system itself. Thus, we introduce a uniform method and framework for applying anomaly detection to a variety of fieldbus protocols. We use stacked denoising autoencoders to derive a feature learning and packet classification method in one step. As the approach is based on the raw byte stream of the network traffic, neither specific protocols nor detailed knowledge of the application is needed. Additionally, we pay attention on creating an efficient framework which can also handle the increased amount of communication in cyber-physical systems. Our evaluation on a Secure Water Treatment dataset using EtherNet/IP and a Modbus dataset shows that we can acquire network packets up to 100 times faster than packet parsing based methods. However, we still achieve precision and recall metrics for longer lasting attacks of over 99%.
  • Publication
    TrustID: Trustworthy identities for untrusted mobile devices
    Identity theft has deep impacts in today's mobile ubiquitous environments. At the same time, digital identities are usually still protected by simple passwords or other insuficient security mechanisms. In this paper, we present the TrustID architecture and protocols to improve this situation. Our architecture utilizes a Secure Element (SE) to store multiple context-specific identities securely in a mobile device, e.g., a smartphone. We introduce protocols for securely deriving identities from a strong root identity into the SE inside the smartphone as well as for using the newly derived IDs. Both protocols do not require a trustworthy smartphone operating system or a Trusted Execution Environment. In order to achieve this, our concept includes a secure combined PIN entry mechanism for user authentication, which prevents attacks even on a malicious device. To show the feasibility of our approach, we implemented a prototype running on a Samsung Galaxy SIII smartphone utilizing a microSD card SE. The German identity card nPA is used as root identity to derive context-specific identities.