Now showing 1 - 10 of 131
No Thumbnail Available
Publication

Improving Semantic Image Segmentation via Label Fusion in Semantically Textured Meshes

2022 , Fervers, Florian , Breuer, Timo , Stachowiak, Gregor , Bullinger, Sebastian , Bodensteiner, Christoph , Arens, Michael

Models for semantic segmentation require a large amount of hand-labeled training data which is costly and time-consuming to produce. For this purpose, we present a label fusion framework that is capable of improving semantic pixel labels of video sequences in an unsupervised manner. We make use of a 3D mesh representation of the environment and fuse the predictions of different frames into a consistent representation using semantic mesh textures. Rendering the semantic mesh using the original intrinsic and extrinsic camera parameters yields a set of improved semantic segmentation images. Due to our optimized CUDA implementation, we are able to exploit the entire c-dimensional probability distribution of annotations over c classes in an uncertainty-aware manner. We evaluate our method on the Scannet dataset where we improve annotations produced by the state-of-the-art segmentation network ESANet from 52.05% to 58.25% pixel accuracy. We publish the source code of our framework online to foster future research in this area (https://github.com/fferflo/semantic-meshes). To the best of our knowledge, this is the first publicly available label fusion framework for semantic image segmentation based on meshes with semantic textures.

No Thumbnail Available
Publication

3D Surface Reconstruction from Multi-Date Satellite Images

2021 , Bullinger, Sebastian , Bodensteiner, Christoph , Arens, Michael

The reconstruction of accurate three-dimensional environment models is one of the most fundamental goals in the field of photogrammetry. Since satellite images provide suitable properties for obtaining large-scale environment reconstructions, there exist a variety of Stereo Matching based methods to reconstruct point clouds for satellite image pairs. Recently, a Structure from Motion (SfM) based approach has been proposed, which allows to reconstruct point clouds from multiple satellite images. In this work, we propose an extension of this SfM based pipeline that allows us to reconstruct not only point clouds but watertight meshes including texture information. We provide a detailed description of several steps that are mandatory to exploit state-of-the-art mesh reconstruction algorithms in the context of satellite imagery. This includes a decomposition of finite projective camera calibration matrices, a skew correction of corresponding depth maps and input images as well as the recovery of real-world depth maps from reparameterized depth values. The paper presents an extensive quantitative evaluation on multi-date satellite images demonstrating that the proposed pipeline combined with current meshing algorithms outperforms state-of-the-art point cloud reconstruction algorithms in terms of completeness and median error. We make the source code of our pipeline publicly available.

No Thumbnail Available
Publication

MissFormer: (In-)Attention-Based Handling of Missing Observations for Trajectory Filtering and Prediction

2021 , Becker, Stefan , Hug, Ronny , Hübner, Wolfgang , Arens, Michael , Morris, Brendan Tran

In applications such as object tracking, time-series data inevitably carry missing observations. Following the success of deep learning-based models for various sequence learning tasks, these models increasingly replace classic approaches in object tracking applications for inferring the objects' motion states. While traditional tracking approaches can deal with missing observations, most of their deep counterparts are, by default, not suited for this. Towards this end, this paper introduces a transformer-based approach for handling missing observations in variable input length trajectory data. The model is formed indirectly by successively increasing the complexity of the demanded inference tasks. Starting from reproducing noise-free trajectories, the model then learns to infer trajectories from noisy inputs. By providing missing tokens, binary-encoded missing events, the model learns to in-attend to missing data and infers a complete trajectory conditioned on the remaining inputs. In the case of a sequence of successive missing events, the model then acts as a pure prediction model. The abilities of the approach are demonstrated on synthetic data and real-world data reflecting prototypical object tracking scenarios.

No Thumbnail Available
Publication

DecaWave ultra-wideband warm-up error correction

2021 , Sidorenko, Juri , Schatz, Volker , Scherer-Negenborn, Norbert , Arens, Michael , Hugentobler, Urs

In the field of indoor localization, ultra-wideband (UWB) technology is no longer dispensable. The market demands that the UWB hardware has to be cheap, precise and accurate. These requirements lead to the popularity of the DecaWave UWB system. The great majority of the publications about this system deals with the correction of the signal power, hardware delay or clock drift. It has traditionally been assumed that this error only appears at the beginning of the operation and is caused by the warm-up process of the crystal. In this article, we show that the warm-up error is influenced by the same error source as the signal power. To our knowledge, no scientific publication has explicitly examined the warm-up error before. This work aims to close this gap and, moreover, to present a solution which does not require any external measuring equipment and only has to be carried out once. It is shown that the empirically obtained warm-up correction curve increases the accuracy for the twoway- ranging (TWR) significantly.

No Thumbnail Available
Publication

A Photogrammetry-based Framework to Facilitate Image-based Modeling and Automatic Camera Tracking

2021 , Bullinger, Sebastian , Bodensteiner, Christoph , Arens, Michael

We propose a framework that extends Blender to exploit Structure from Motion (SfM) and Multi-View Stereo (MVS) techniques for image-based modeling tasks such as sculpting or camera and motion tracking. Applying SfM allows us to determine camera motions without manually defining feature tracks or calibrating the cameras used to capture the image data. With MVS we are able to automatically compute dense scene models, which is not feasible with the built-in tools of Blender. Currently, our framework supports several state-of-the-art SfM and MVS pipelines. The modular system design enables us to integrate further approaches without additional effort. The framework is publicly available as an open source software package.

No Thumbnail Available
Publication

LiDAR-based localization and automatic control of UAVs for mobile remote reconnaissance

2021 , Hammer, Marcus , Borgmann, Björn , Hebel, Marcus , Arens, Michael

Sensor-based monitoring of the surroundings of civilian vehicles is primarily relevant for driver assistance in road traffic, whereas in military vehicles, far-reaching reconnaissance of the environment is crucial for accomplishing the respective mission. Modern military vehicles are typically equipped with electro-optical sensor systems for such observation or surveillance purposes. However, especially when the line-of-sight to the onward route is obscured or visibility conditions are generally limited, more enhanced methods for reconnaissance are needed. The obvious benefit of micro-drones (UAVs) for remote reconnaissance is well known. The spatial mobility of UAVs can provide additional information that cannot be obtained on the vehicle itself. For example, the UAV could keep a fixed position in front and above the vehicle to gather information about the area ahead, or it could fly above or around obstacles to clear hidden areas. In a military context, this is usually referred to as manned-unmanned teaming (MUM-T). In this paper, we propose the use of vehicle-based electro-optical sensors as an alternative way for automatic control of (cooperative) UAVs in the vehicle's vicinity. In its most automated form, the external control of the UAV only requires a 3D nominal position relative to the vehicle or in absolute geocoordinates. The flight path there and the maintaining of this position including obstacle avoidance are automatically calculated on-board the vehicle and permanently communicated to the UAV as control commands. We show first results of an implementation of this approach using 360° scanning LiDAR sensors mounted on a mobile sensor unit. The control loop of detection, tracking and guidance of a cooperative UAV in the local environment is demonstrated by two experiments. We show the automatic LiDAR-controlled navigation of a UAV from a starting point A to a destination point B. with and without an obstacle between A and B. The obstacle in the direct path is detected and an alternative flight route is calculated and used.

No Thumbnail Available
Publication

The MODISSA testbed: A multi-purpose platform for the prototypical realization of vehicle-related applications using optical sensors

2021 , Borgmann, Björn , Schatz, Volker , Hammer, Marcus , Hebel, Marcus , Arens, Michael , Stilla, Uwe

We present the current state of development of the sensor-equipped car MODISSA, with which Fraunhofer IOSB realizes a configurable experimental platform for hardware evaluation and software development in the context of mobile mapping and vehicle-related safety and protection. MODISSA is based on a van that has successively been equipped with a variety of optical sensors over the past few years, and contains hardware for complete raw data acquisition, georeferencing, real-time data analysis, and immediate visualization on in-car displays. We demonstrate the capabilities of MODISSA by giving a deeper insight into experiments with its specific configuration in the scope of three different applications. Other research groups can benefit from these experiences when setting up their own mobile sensor system, especially regarding the selection of hardware and software, the knowledge of possible sources of error, and the handling of the acquired sensor data.

No Thumbnail Available
Publication

Efficient Tour Planning for a Measurement Vehicle by Combining Next Best View and Traveling Salesman

2021 , Gehrung, Joachim , Hebel, Marcus , Arens, Michael , Stilla, Uwe

Path planning for a measuring vehicle requires solving two popular problems from computer science, namely the search for the optimal tour and the search for the optimal viewpoint. Combining both problems results in a new variation of the Traveling Salesman Problem, which we refer to as the Explorational Traveling Salesman Problem. The solution to this problem is the optimal tour with a minimum of observations. In this paper, we formulate the basic problem, discuss it in context of the existing literature and present an iterative solution algorithm. We demonstrate how the method can be applied directly to LiDAR data using an occupancy grid. The ability of our algorithm to generate suitably efficient tours is verified based on two synthetic benchmark datasets, utilizing a ground truth determined by an exhaustive search.

No Thumbnail Available
Patent

DecaWave-Ultra-Breitband-Reflexions-Fehler-Korrektur

2021 , Sidorenko, Juri , Scherer-Negenborn, Norbert , Arens, Michael

Es ist eine Anordnung zur Bestimmung einer Wegstrecke eines Empfängers zu einem Reflexionspunkt einer reflektierten elektromagnetischen Wellen mit einem Ultra Wide Band (UWB) System beschrieben, bei welchem eine Kanal Impuls Antwort auslesbar ist. Das UWB System umfasst einen Sender zum Aussenden einer elektromagnetischen Welle, einen Empfänger zum Empfangen der ausgesendeten elektromagnetischen Welle, wobei der Empfänger dazu ausgebildet ist, die ausgesendete elektromagnetische Welle direkt vom Sender zu empfangen, und dazu ausgebildet ist, die ausgesendete elektromagnetische Welle als reflektierte elektromagnetische Welle zu empfangen, wobei das UWB System dazu ausgebildet ist, die Kanal Impuls Antwort auszulesen und aus der Kanal Impuls Antwort einen Einfallswinkel der reflektierten elektromagnetischen Welle zu bestimmen, und eine Phasendifferenz zwischen der direkt vom Sender empfangenen elektromagnetischen Welle und der reflektierten elektromagnetischen Welle zu bestimmen, und einen Laufzeitunterschied zwischen der ausgesendeten elektromagnetischen Welle und der reflektierten elektromagnetischen Welle basierend auf der Phasendifferenz zu bestimmen, um basierend auf der Phasendifferenz die Wegstrecke des Empfängers zu dem Reflexionspunkt der reflektierten elektromagnetischen Welle zu bestimmen. Ferner sind ein Verfahren zum Bestimmen einer Wegstrecke eines Empfängers zu einem Reflexionspunkt einer reflektierten elektromagnetischen Wellen mit einem Ultra Wide Band System und ein Computerprogramcode beschrieben.

No Thumbnail Available
Publication

Quantifying the Complexity of Standard Benchmarking Datasets for Long-Term Human Trajectory Prediction

2021 , Hug, Ronny , Becker, Stefan , Hübner, Wolfgang , Arens, Michael

Methods to quantify the complexity of trajectory datasets are still a missing piece in benchmarking human trajectory prediction models. In order to gain a better understanding of the complexity of trajectory prediction tasks and following the intuition, that more complex datasets contain more information, an approach for quantifying the amount of information contained in a dataset from a prototype-based dataset representation is proposed. The dataset representation is obtained by first employing a non-trivial spatial sequence alignment, which enables a subsequent learning vector quantization (LVQ) stage. A large-scale complexity analysis is conducted on several human trajectory prediction benchmarking datasets, followed by a brief discussion on indications for human trajectory prediction and benchmarking.