Now showing 1 - 2 of 2
  • Publication
    Opportunities and challenges of high renewable energy deployment and electricity exchange for North Africa and Europe - scenarios for power sector and transmission infrastructure in 2030 and 2050
    ( 2016) ; ;
    Bohn, Sven
    ;
    Agsten, Michael
    ;
    Bretschneider, Peter
    ;
    Snigovyi, Oleksandr
    ;
    ; ; ;
    Westermann, Dirk
    Climate change and limited availability of fossil fuel reserves stress both the importance of deploying renewable energy sources (RES) for electricity generation and the need for a stronger integration of regional electricity markets. This analysis focuses on North African (NA) countries, which possess vast resources of renewable energy but whose electricity supply is still largely dependent on fossil fuels. An analysis of cost-optimized deployment scenarios for RES is conducted in five NA countries in 2030 and 2050. Three electricity models are combined to derive results covering trans-regional to sub-national level, including a detailed analysis of grid capacities and future transmission challenges. Further, opportunities for integration of European and NA electricity markets are evaluated. Results confirm that, by 2050, high RES shares - close to 100% - are possible in NA. Wind energy is the dominant technology. Concentrated Solar Power (CSP) plants also play an important role with rising RES shares due to the possibility to store thermal energy. Electricity exports to Europe gain particular importance in the period after 2030. Substantial transmission grid reinforcements on AC-level and the construction of a high voltage DC overlay grid are prerequisites for the forecasted scenarios.
  • Publication
    An ICT architecture for managed charging of electric vehicles in smart grid environments
    ( 2013)
    Bohn, Sven
    ;
    Agsten, Michael
    ;
    Waldhorst, Oliver
    ;
    Mitschele-Thiel, Andreas
    ;
    Westermann, Dirk
    ;
    Bretschneider, Peter
    Growing shortage of fossil resources and an increasing demand of individual mobility worldwide require technology alternatives to existing mobility solutions. Electric vehicles (EVs) as one possible solution have moved into the focus of research and development. To maximize the positive environmental effect of EVs, it is proposed to charge them with respect to the availability of renewable energies. As the number of EVs will grow in the near future, their impact on the power distribution grid is no longer neglect table. Related research shows that unmanaged charging of EVs could result in overload situations or voltage instabilities. To overcome this, methods are proposed to manage the charging process holistically. Herein EVs become substantial elements of intelligent power grids (Smart Grids). As of today, research in the area of Smart Grids focuses mainly on either energy aspects or communication aspects while neglecting the interoperability of energy and communication related aspects. In this paper, an insight into Information and Communication Technology (ICT) aspects with respect to Managed Charging of EVs in Smart Grid environments will be given. Based on the use case of Managed Charging, requirements will be analyzed, results will be derived, and ICT solutions will be proposed with a set of recommendations for Smart Grid architectures.