Now showing 1 - 1 of 1
  • Publication
    Theoretical investigation of scanning probe lithography in field-emission mode
    ( 2019)
    Lenk, Steve
    Die Miniaturisierung der kleinsten Bauelemente, d. h. der Transistoren, in integrierten Schaltungen auf Siliziumbasis nähert sich langsam den physikalischen Grenzen und alternative Strukturierungs- und Strukturübertragungsmethoden werden benötigt um zu noch kleineren Strukturen zu gelangen. Eine dieser alternativen Strukturierungsverfahren ist die feldemissionsbasierte Rastersondenlithographie. Diese Technologie beruht auf der Belichtung einer Resistschicht mittels Elektronen, welche aus der Rastersondenspitze aufgrund des angelegten elektrischen Feldes emittiert werden. Das Verfahren wurde schon erfolgreich zur Herstellung neuartiger Einzelquantenpunkttransistoren verwendet, welche bei Raumtemperatur arbeiten und kann Strukturgrößen von unter 10 nm erzeugen. Nichtsdestotrotz mangelt es an einer theoretischen Beschreibung, welche insbesondere den Einfluss der Resistschicht auf das Emissionsverhalten der Elektronen aus der Spitze wie auch die Wechselwirkung der Elektronen mit den Molekülen der Resistschicht umfasst. Optimale Parameter zum Erreichen der besten Auflösung mit einer bestimmten Emissionsspitze müssen zurzeit in einem empirischen Versuch bestimmt werden. Das ist sowohl zeitaufwendig, nutzt die Spitze ab und birgt das Risiko einer Berührung der Spitze mit der Probe. Dadurch entsteht wiederum die Gefahr, dass die empirische Optimierung wiederholt werden muss. Um dies zu vermeiden, wäre ein theoretisches Modell wünschenswert, welches die optimalen Parameter vorhersagen kann. In dieser Arbeit wird ein umfassendes numerisches Modell der Rastersondenlithographie vorgestellt, welches die Berechnung des elektrischen Feldes, der Emissionsstromdichte aus der Spitze und der Elektronentrajektorien beinhaltet sowie eine Monte Carlo Simulation zur Berechnung der elektronischen Wechselwirkungen in der Resistschicht einschließt. Dieses Modell ist für beliebige zylindersymmetrische Spitzen anwendbar (u. a. für Spitzen mit einer umschließenden Elektrode) und berücksichtigt den Einfluss der Resistschicht in der gesamten Berechnung. Zur Verbesserung des Verständnisses der physikalischen Grundlagen, zur Vorhersage optimaler Parameter und zur Resourcenminimierung der Berechnung wurde ein analytisches Modell abgeleitet, welches, bis auf die Wechselwirkungen in der Resistschicht, alle Teile des numerischen Modells für eine typische Spitzenform beinhaltet. Damit konnte der Einfluss der durch die Spitze vorgegebenen Parameter (z. B. Spitzenradius) und der extern einstellbaren Parameter (z. B. Spannung, Schreibgeschwindigkeit) untersucht werden. Das analytische Modell wurde erfolgreich zur Analyse von Feldemissionsexperimenten genutzt und es konnte damit die systemeigene Driftgeschwindigkeit beziehungsweise die Wachstumsrate der experimentell beobachteten Strukturen abgeschätzt werden. Weiterhin konnte es die experimentell beobachtete Abhängigkeit der Linienbreite von der Bestrahlungsdosis und der Spannung reproduzieren. Somit steht erstmals ein vollständiges theoretisches Modell zur Beschreibung der feldemissionsbasierten Rastersondenlithographie zur Verfügung, welches alle relevanten Parametereinflüsse (im Vakuumbetrieb) beinhaltet. Der analytische Teil des Modells kann zur Vorhersage der zu schreibenden Strukturen und zur Parameteranpassung verwendet und in die Software des Lithographiesystems eingebaut werden.