Now showing 1 - 4 of 4
  • Publication
    A multi-sensorial approach for the protection of operational vehicles by detection and classification of small flying objects
    Due to the high availability and the easy handling of small drones, the number of reported incidents caused by UAVs both intentionally and accidentally is increasing. To be capable to prevent such incidents in future, it is essential to be able to detect UAVs. However, not every small flying object poses a potential threat and therefore the object not only has to be detected, but also classified or identified. Typical 360CR scanning LiDAR systems can be deployed to detect and track small objects in the 3D sensor data at ranges of up to 50 m. Unfortunately, in most cases the verification and classification of the detected objects is not possible due to the low resolution of this type of sensor. In high-resolution 2D images, a differentiation of flying objects seems to be more practical, and at least cameras in the visible spectrum are well established and inexpensive. The major drawback of this type of sensor is the dependence on an adequate illumination. An active illumination could be a solution to this problem, but it is usually impossible to illuminate the scene permanently. A more practical way would be to select a sensor with a different spectral sensitivity, for example in the thermal IR. In this paper, we present an approach for a complete chain of detection, tracking and classification of small flying objects such as micro UAVs or birds, using a mobile multi-sensor platform with two 360CR LiDAR scanners and pan-and-tilt cameras in the visible and thermal IR spectrum. The flying objects are initially detected and tracked in 3D LiDAR data. After detection, the cameras (a grayscale camera in the visible spectrum and a bolometer sensitive in the wavelength range of 7.5 µm to 14 µm) are automatically pointed to the object's position, and each sensor records a 2D image. A convolutional neural network (CNN) realizes the identification of the region of interest (ROI) as well as the object classification (we consider classes of eight different types of UAVs and birds). In particular, we compare the classification results of the CNN for the two camera types, i.e. for the different wavelengths. The high number of training data for the CNN as well as the test data used for the experiments described in this paper were recorded at a field trial of the NATO group SET-260 (""Assessment of EO/IR Technologies for Detection of Small UAVs in an Urban Environment"") at CENZUB, Sissonne, France.
  • Publication
    Image based classification of small flying objects detected in LiDAR point clouds
    The number of reported incidents caused by UAVs, intentional as well as accidental, is rising. To avoid such incidents in future, it is essential to be able to detect UAVs. However, not every small flying object is a potential threat and therefore the object not only has to be detected, but classified or identified. Typical 360° scanning LiDAR sensors, like those developed for automotive applications, can be deployed for the detection and tracking of small objects in ranges up to 50 m. Unfortunately, the verification and classification of the detected objects is not possible in most cases, due to the low resolution of that kind of sensor. In visual images a differentiation of flying objects seems more practical. In this paper, we present a method for the distinction between UAVs and birds in multi-sensor data (LiDAR point clouds and visual images). The flying objects are initially detected and tracked in LiDAR data. After detection, a grayscale camera is automatically pointed onto the object and an image is recorded. The differentiation between UAV and bird is then realized by a convolutional neural network (CNN). In addition, we investigate the potential of this approach for a more detailed classification of the type of UAV. The paper shows first results of this multi-sensor classification approach. The high number of training data for the CNN as well as the test data of the experiments were recorded at a field trial of the NATO group SET-260 ("Assessment of EO/IR Technologies for Detection of Small UAVs in an Urban Environment").
  • Publication
    Potential of lidar sensors for the detection of UAVs
    The number of reported incidents caused by UAVs, intentional as well as accidental, is rising. To avoid such incidents in future, it is essential to be able to detect UAVs. LiDAR systems are well known to be adequate sensors for object detection and tracking. In contrast to the detection of pedestrians or cars in traffic scenarios, the challenges of UAV detection lie in the small size, the various shapes and materials, and in the high speed and volatility of their movement. Due to the small size of the object and the limited sensor resolution, a UAV can hardly be detected in a single frame. It rather has to be spotted by its motion in the scene. In this paper, we present a fast approach for the tracking and detection of (low) flying small objects like commercial mini/micro UAVs. Unlike with the typical sequence -track-after-detect-, we start with looking for clues by finding minor 3D details in the 360° LiDAR scans of scene. If these clues are detectable in consecutive scans (possibly including a movement), the probability for the actual detection of a UAV is rising. For the algorithm development and a performance analysis, we collected data during a field trial with several different UAV types and several different sensor types (acoustic, radar, EO/IR, LiDAR). The results show that UAVs can be detected by the proposed methods, as long as the movements of the UAVs correspond to the LiDAR sensor's capabilities in scanning performance, range and resolution. Based on data collected during the field trial, the paper shows first results of this analysis.
  • Publication
    Lidar-based detection and tracking of small UAVs
    The number of reported incidents caused by small UAVs, intentional as well as accidental, is rising. To avoid such incidents in future, it is essential to be able to detect UAVs. LiDAR sensors (e.g., laser scanners) are well known to be adequate sensors for object detection and tracking. In this paper, we expand our existing LiDAR-based approach for the tracking and detection of (low) flying small objects like commercial mini/micro UAVs. We show that UAVs can be detected by the proposed methods, as long as the movements of the UAVs correspond to the LiDAR sensor's capabilities in scanning performance, range and resolution. The trajectory of the tracked object can further be analyzed to support the classification, meaning that UAVs and non- UAV objects can be distinguished by an identification of typical movement patterns. A stable tracking of the UAV is achieved by a precise prediction of its movement. In addition to this precise prediction of the target's position, the object detection, tracking and classification have to be achieved in real-time. For the algorithm development and a performance analysis, we analyzed LiDAR data that we acquired during a field trial. Several different mini/micro UAVs were observed by a system of four 360° LiDAR sensors mounted to a car. Using this specific sensor system, the results show that UAVs can be detected and tracked by the proposed methods, allowing a protection of the car against UAV threats within a radius of up to 35 m.