Now showing 1 - 10 of 35
  • Publication
    Generating Synthetic Training Data for Deep Learning-Based UAV Trajectory Prediction
    Deep learning-based models, such as recurrent neural networks (RNNs), have been applied to various sequence learning tasks with great success. Following this, these models are increasingly replacing classic approaches in object tracking applications for motion prediction. On the one hand, these models can capture complex object dynamics with less modeling required, but on the other hand, they depend on a large amount of training data for parameter tuning. Towards this end, we present an approach for generating synthetic trajectory data of unmanned-aerial-vehicles (UAVs) in image space. Since UAVs, or rather quadrotors are dynamical systems, they can not follow arbitrary trajectories. With the prerequisite that UAV trajectories fulfill a smoothness criterion corresponding to a minimal change of higher-order motion, methods for planning aggressive quadrotors flights can be utilized to generate optimal trajectories through a sequence of 3D waypoints. By projecting these maneuver trajectories, which are suitable for controlling quadrotors, to image space, a versatile trajectory data set is realized. To demonstrate the applicability of the synthetic trajectory data, we show that an RNN-based prediction model solely trained on the generated data can outperform classic reference models on a real-world UAV tracking dataset. The evaluation is done on the publicly available ANTI-UAV dataset.
  • Publication
    Quantifying the Complexity of Standard Benchmarking Datasets for Long-Term Human Trajectory Prediction
    Methods to quantify the complexity of trajectory datasets are still a missing piece in benchmarking human trajectory prediction models. In order to gain a better understanding of the complexity of trajectory prediction tasks and following the intuition, that more complex datasets contain more information, an approach for quantifying the amount of information contained in a dataset from a prototype-based dataset representation is proposed. The dataset representation is obtained by first employing a non-trivial spatial sequence alignment, which enables a subsequent learning vector quantization (LVQ) stage. A large-scale complexity analysis is conducted on several human trajectory prediction benchmarking datasets, followed by a brief discussion on indications for human trajectory prediction and benchmarking.
  • Publication
    Handling Missing Observations with an RNN-based Prediction-Update Cycle
    In tasks such as tracking, time-series data inevitably carry missing observations. While traditional tracking approaches can handle missing observations, recurrent neural networks (RNNs) are designed to receive input data in every step. Furthermore, current solutions for RNNs, like omitting the missing data or data imputation, are not sufficient to account for the resulting increased uncertainty. Towards this end, this paper introduces an RNN-based approach that provides a full temporal filtering cycle for motion state estimation. The Kalman filter inspired approach enables to deal with missing observations and outliers. For providing a full temporal filtering cycle, a basic RNN is extended to take observations and the associated belief about its accuracy into account for updating the current state. An RNN prediction model, which generates a parametrized distribution to capture the predicted states, is combined with an RNN update model, which relies on the prediction model output and the current observation. By providing the model with masking information, binary-encoded missing events, the model can overcome limitations of standard techniques for dealing with missing input values. The model abilities are demonstrated on synthetic data reflecting prototypical pedestrian tracking scenarios.
  • Publication
    MissFormer: (In-)Attention-Based Handling of Missing Observations for Trajectory Filtering and Prediction
    In applications such as object tracking, time-series data inevitably carry missing observations. Following the success of deep learning-based models for various sequence learning tasks, these models increasingly replace classic approaches in object tracking applications for inferring the objects' motion states. While traditional tracking approaches can deal with missing observations, most of their deep counterparts are, by default, not suited for this. Towards this end, this paper introduces a transformer-based approach for handling missing observations in variable input length trajectory data. The model is formed indirectly by successively increasing the complexity of the demanded inference tasks. Starting from reproducing noise-free trajectories, the model then learns to infer trajectories from noisy inputs. By providing missing tokens, binary-encoded missing events, the model learns to in-attend to missing data and infers a complete trajectory conditioned on the remaining inputs. In the case of a sequence of successive missing events, the model then acts as a pure prediction model. The abilities of the approach are demonstrated on synthetic data and real-world data reflecting prototypical object tracking scenarios.
  • Publication
    Introducing Probabilistic Bézier Curves for N-Step Sequence Prediction
    Representations of sequential data are commonly based on the assumption that observed sequences are realizations of an unknown underlying stochastic process, where the learning problem includes determination of the model parameters. In this context, a model must be able to capture the multi-modal nature of the data, without blurring between single modes. This paper proposes probabilistic Bezier curves (N-Curves) as a basis for effectively modeling continuous-time stochastic processes. The model is based on Mixture Density Networks (MDN) and Bezier curves with Gaussian random variables as control points. Key advantages of the model include the ability of generating smooth multi-mode predictions in a single inference step which reduces the need for Monte Carlo simulation. This property is in line with recent attempts to address the problem of quantifying uncertainty as a regression problem. Essential properties of the proposed approach are illustrated by several toy examples and the task of multi-step sequence prediction. As an initial proof of concept, the model performance is compared to an LSTM-MDN model and recurrent Gaussian processes on two real world use-cases, trajectory prediction and motion capture sequence prediction.
  • Publication
    A Short Note on Analyzing Sequence Complexity in Trajectory Prediction Benchmarks
    The analysis and quantification of sequence complexity is an open problem frequently encountered when defining trajectory prediction benchmarks. In order to enable a more informative assembly of a data basis, an approach for determining a dataset representation in terms of a small set of distinguishable prototypical sub-sequences is proposed. The approach employs a sequence alignment followed by a learning vector quantization (LVQ) stage. A first proof of concept on synthetically generated and real-world datasets shows the viability of the approach.
  • Publication
    A complementary trajectory prediction benchmark
    Existing benchmarks targeting the overall performance of trajectory prediction models lack the possibility of gaining insight into a model's behavior under specific conditions. Towards this end, a new benchmark aiming to take on a complementary role compared to existing benchmarks is proposed. It consists of synthetically generated and modified real-world trajectories from established datasets with scenario-dependent test and training splits. The benchmark provides a hierarchy of three inference tasks, representation learning, de-noising, and prediction, comprised of several test cases targeting specific aspects of a given machine learning model. This allows a differentiated evaluation of the model's behavior and generalization capabilities. As a result, a sanity check for single trajectory models is provided aiming to prevent failure cases and highlighting requirements for improving modeling capabilities.
  • Publication
    RED: A simple but effective Baseline Predictor for the TrajNet Benchmark
    In recent years, there is a shift from modeling the tracking problem based on Bayesian formulation towards using deep neural networks. Towards this end, in this paper the effectiveness of various deep neural networks for predicting future pedestrian paths are evaluated. The analyzed deep networks solely rely, like in the traditional approaches, on observed tracklets without human-human interaction information. The evaluation is done on the publicly available TrajNet benchmark dataset [39], which builds up a repository of considerable and popular datasets for trajectory prediction. We show how a Recurrent-Encoder with a Dense layer stacked on top, referred to as RED-predictor, is able to achieve top-rank at the TrajNet 2018 challenge compared to elaborated models. Further, we investigate failure cases and give explanations for observed phenomena, and give some recommendations for overcoming demonstrated shortcomings.
  • Publication
    An RNN-Based IMM Filter Surrogate
    The problem of varying dynamics of tracked objects, such as pedestrians, is traditionally tackled with approaches like the Interacting Multiple Model (IMM) filter using a Bayesian formulation. By following the current trend towards using deep neural networks, in this paper an RNN-based IMM filter surrogate is presented. Similar to an IMM filter solution, the presented RNN-based model assigns a probability value to a performed dynamic and, based on them, puts out a multi-modal distribution over future pedestrian trajectories. The evaluation is done on synthetic data, reflecting prototypical pedestrian maneuvers.
  • Publication
    Modeling continuous-time stochastic processes using N-Curve mixtures
    Representations of sequential data are commonly based on the assumption that observed sequences are realizations of an unknown underlying stochastic process, where the learning problem includes determination of the model parameters. In this context the model must be able to capture the multi-modal nature of the data, without blurring between modes. This property is essential for applications like trajectory prediction or human motion modeling. Towards this end, a neural network model for continuous-time stochastic processes usable for sequence prediction is proposed. The model is based on Mixture Density Networks using Bézier curves with Gaussian random variables as control points (abbrev.: N-Curves). Key advantages of the model include the ability of generating smooth multi-mode predictions in a single inference step which reduces the need for Monte Carlo simulation, as required in many multi-step prediction models, based on state-of-the-art neural networks. Essential properties of the proposed approach are illustrated by several toy examples and the task of multi-step sequence prediction. Further, the model performance is evaluated on two real world use-cases, i.e. human trajectory prediction and human motion modeling, outperforming different state-of-the-art models.