Now showing 1 - 3 of 3
  • Publication
    Superpoints in RANSAC planes: A new approach for ground surface extraction exemplified on point classification and context-aware reconstruction
    ( 2020) ; ;
    Lucks, Lukas
    ;
    Weinmann, Martin
    In point clouds obtained from airborne data, the ground points have traditionally been identified as local minima of the altitude. Subsequently, the 2.5D digital terrain models have been computed by approximation of a smooth surfaces from the ground points. But how can we handle purely 3D surfaces of cultural heritage monuments covered by vegetation or Alpine overhangs, where trees are not necessarily growing in bottom-to-top direction? We suggest a new approach based on a combination of superpoints and RANSAC implemented as a filtering procedure, which allows efficient handling of large, challenging point clouds without necessity of training data. If training data is available, covariance-based features, point histogram features, and dataset-dependent features as well as combinations thereof are applied to classify points. Results achieved with a Random Forest classifier and non-local optimization using Markov Random Fields are analyzed for two challenging datasets: an airborne laser scan and a photogrammetrically reconstructed point cloud. As an application, surface reconstruction from the thus cleaned point sets is demonstrated.
  • Publication
    Automatic Generation of Training Data for Land Use and Land Cover Classification by Fusing Heterogeneous Data Sets
    ( 2020) ;
    Weinmann, Martin
    ;
    Weidner, Uwe
    ;
    ;
    Nowadays, automatic classification of remote sensing data can efficiently produce maps of land use and land cover, which provide an essential source of information in the field of environmental sciences. Most state-of-the-art algorithms use supervised learning methods that require a large amount of annotated training data. In order to avoid time-consuming manual labelling, we propose a method for the automatic annotation of remote sensing data that relies on available land use and land cover information. Using the example of automatic labelling of SAR data, we show how the Dempster-Shafer evidence theory can be used to fuse information from different land use and land cover products into one training data set. Our results confirm that the combination of information from OpenStreetMap, CORINE Land Cover 2018, Global Surface Water and the SAR data itself leads to reliable class assignments, and that this combination outperforms each considered single land use and land cover product.
  • Publication
    Incorporating interferometric coherence into LULC classification of airborne PolSAR-images using fully convolutional networks
    ( 2020) ;
    Weinmann, Martin
    ;
    Inspired by the application of state-of-the-art Fully Convolutional Networks (FCNs) for the semantic segmentation of high-resolution optical imagery, recent works transfer this methodology successfully to pixel-wise land use and land cover (LULC) classification of PolSAR data. So far, mainly single PolSAR images are included in the FCN-based classification processes. To further increase classification accuracy, this paper presents an approach for integrating interferometric coherence derived from co-registered image pairs into a FCN-based classification framework. A network based on an encoder-decoder structure with two separated encoder branches is presented for this task. It extracts features from polarimetric backscattering intensities on the one hand and interferometric coherence on the other hand. Based on a joint representation of the complementary features pixel-wise classification is performed. To overcome the scarcity of labelled SAR data for training and testing, annotations are generated automatically by fusing available LULC products. Experimental evaluation is performed on high-resolution airborne SAR data, captured over the German Wadden Sea. The results demonstrate that the proposed model produces smooth and accurate classification maps. A comparison with a single-branch FCN model indicates that the appropriate integration of interferometric coherence enables the improvement of classification performance.