Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Model-based routing in flexible manufacturing systems

2019 , Windmann, Stefan , Balzereit, Kaja , Niggemann, Oliver

In this paper, a model-based routing approach for flexible manufacturing systems (FMS) with alternative routes for the work pieces is proposed. For each work piece, an individual task has to be accomplished, which consists of several processing steps. Each processing step can be executed on alternative working stations of the FMS. The proposed routing method employs a model of the conveying system to find energy efficient and fast routes for the respective work pieces. The conveying system model is based on a directed graph, where the individual conveyors are modeled as weighted edges. It can be straightforwardly applied to several types of FMS by adjusting the application-dependent parameters. Efficient computation of the fastest route through the conveying system is accomplished by means of dynamic programming, i. e., by integration of Dijkstra's algorithm in a dynamic programming framework, which is based on the proposed conveying system model. Additional consideration of energy efficiency aspects leads to a Mixed Integer Quadratically Constraint Program (MIQCP), which is solved by substitution of Dijkstra's algorithm by a branch and bound method. Experimental results for an application scenario, where the energy efficient routing method is applied to route work pieces between the working stations of an FMS, lead to 20 % reduction of energy consumption on average.

No Thumbnail Available
Publication

Computation of energy efficient driving speeds in conveying systems

2018 , Windmann, Stefan , Niggemann, Oliver , Stichweh, Heiko

This article addresses the automatic optimization of driving speeds in conveying systems. Electric drives in existing conveying systems are usually accelerated and decelerated according to predetermined movement profiles. Such an approach is inflexible for conveying applications with changing constraints and, in many cases, not optimal with respect to energy efficiency. In the present work, a method for automatic computation of energy efficient movement profiles is proposed. The proposed method is based on accurate models for electric drives and several types of conveying applications such as roll conveyors, belt conveyors and vertical conveyors. Furthermore, joint energy efficiency optimization for two drives, which are attached to an intermediate circuit, is investigated. Thereby, additional constraints on the energy flow between the drives are imposed in order to reduce load peaks and energy feedback into the grid. The resulting optimization problem is a mixed integer quadratic program (MIQP), which can be solved in a few milliseconds. Experimental results show that energy losses of electric drives are cut down by using the obtained non-trivial movement profiles instead of standard trapezoid movement profiles. The additional constraints on the energy flow between two drives lead to further significant improvements with respect to the overall energy losses.