Now showing 1 - 7 of 7
  • Publication
    Sensitivity enhanced roll-angle sensor by means of a quarter-waveplate
    Attitude metrology (roll, pitch, and yaw) playsan important role in many different fields. Roll angle is con-sidered the most difficult measurement quantity in angulardisplacements compared to pitch and yaw angles becausethe rotation axis of the roll angle is parallel to the probebeam. In this work, a sensitivity enhanced roll-angle sensor is presented. The principle is based on the polarizationchange of a sensing unit (quarter-waveplate). The polarization model is analyzed by Mueller matrix formalism. TheStokes parameters are detected by a Stokes polarimeter.The novel coaxial design improves the sensitivity and reduce the complexity of optical system alignment by meansof a fixed quarter-waveplate. The proposed sensor providesa simple setup to measure roll angles with a high sensitivity of 0.006∘ and a long unambiguous measurement range of 180∘.
  • Publication
    Analytical determination of the complex refractive index and the incident angle of an optically isotropic substrate by ellipsometric parameters and reflectance
    An analytical solution for the determination of both angle of incidence (AOI) and the complex refractive index from combined ellipsometric and reflectometric measurements at optically isotropic substrates is presented. Conventional ellipsometers usually measure flat surfaces because the curvatures of the surface alter the reflected or transmitted light, which causes experimental errors due to the deviation of the incident angle. However, in real industrial applications, the shapes of samples are usually curved or even free-form. In this case, the knowledge of the AOI is essential. The proposed method provides a simple way to measure the AOI and the complex refractive index of nonplanar samples without extra or complicated hardware.
  • Publication
    Retroreflex ellipsometry for isotropic substrates with nonplanar surfaces
    Ellipsometry is a widely-used and highly-accurate method for characterizing materials and thin films, though conventional ellipsometry restricts the geometric shape of samples to flat or nearly flat surfaces. For nonplanar surfaces, the beam path of the reflected or transmitted light will be altered owing to the curvature of the surfaces. The concept of retroreflex ellipsometry was developed at Fraunhofer IOSB to overcome the limitation of conventional ellipsometry via a retroreflector (retroreflective sheet). However, prior information regarding the samples is still necessary. In this paper, retroreflex ellipsometry is combined with reflectance measurements to derive the optical properties for isotropic substrates with nonplanar surfaces using the reflectance R and the ellipsometric data (PS, D) without prior knowledge of incident angles. The experimental results show that this retroreflex ellipsometry prototype has excellent accuracy and precision for the full Mueller matrix measurement and is capable of measuring refractive indices of nonplanar surfaces.
  • Publication
    Ellipsometric inline inspection of dielectric substrates with nonplanar surfaces
    An analytical solution for the determination of either angle of incidence (AOI) and the refractive index from combined ellipsometric and reflectometric measurements at dielectric substrates is presented. The solution is of special importance for retroreflex ellipsometry (but not limited to this application). Overcoming the geometric restrictions of conventional ellipsometers, the patented retroreflex ellipsometry can detect changes of intensity and the state of polarization in or at test objects even with curved surfaces. In contrast to conventional ellipsometers where the AOI is set by the adjustment procedure, the AOI is usually unknown in retroreflex ellipsometry. For quantitative analysis, the knowledge of the AOI is nevertheless essential. The proposed combination of retroreflex-reflectometry and retroreflex-ellipsometry opens the path to precise measurements of either surface geometry and index of refraction of nonplanar dielectric substrates (e. g. surfaces of freeform optics).
  • Publication
    Measurement of ellipsometric data and surface orientations by modulated circular polarized light
    Ellipsometry is a widely used optical method for the characterization of materials and thin films. However, only flat or nearly flat surfaces can be measured since small deviations of the angle of incidence might lead to significant experimental errors. In order to overcome the geometrical limitations of ellipsometry, the retroreflex ellipsometry developed at Fraunhofer IOSB is used. Based on this configuration, a new illumination method is proposed. When the sample is illuminated by modulated circular polarized light (LCP and RCP), the ellipsometric parameters (PS, D) and the tilted angle (F) can be determined directly. Combined with reflectance measurement or prior knowledge of optical properties of samples, the surface orientation can be obtained.
  • Publication
    SNR-optimized image fusion for transparent object inspection
    Automated visual inspection of transparent objects is important for many industrial fields. Especially the detection of scattering impurities inside complexly shaped transparent objects is a demanding task. Usually, so-called dark field approaches are employed in this case. However, these methods often fail due to direct reflections of the light sources, e.g., at the test object's surface which cannot be distinguished from signals of real material defects. This paper introduces an inspection approach which captures images at different illumination modalities and fuses them while optimizing the signal-to-noise ratio. Two fusion strategies are presented, which employ prior knowledge in order to obtain optimized inspection images. The signal component of the observed images is defined as the signal corresponding to visualized defects. Conversely, all light reaching the sensor due to scattering or reflections caused by the test object's geometry is regarded as noise. The signal values and noise values depend on both the pixel position and the respective illumination source. Prior knowledge about the signal and noise components allows to estimate the spatially resolved SNR for every illumination channel. The images resulting from the fusion step show scattering material defects with high contrast whereas surface reflections are nearly completely mitigated by the SNR-optimized fusion strategies. Several experiments state the performance of the presented approaches.